Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Индукция и дедукция при обучении математике





Одной из основных задач современного школьного обучения является развитие мышления учащихся. В отличии от традиционного мышления, современное обучение характеризуется стремлением сделать развитие мышления школьников управляемым процессом, а основные приемы мышления - специальным предметом усвоения.

Мышление характеризуют качества научного мышления:

- гибкость - умение целесообразно варьировать способы решения познавательной проблемы, легкость перехода от одного пути решения проблемы к другому; умение выходить за границы привычного способа действия, находить новые способы решения проблемы при изменении задаваемых условий; умение перестраивать систему усвоенных знаний по мере овладения новыми знаниями и накопления опыта;
- оригинальность - высший уровень развития нешаблонного мышления, необычность способов решения учащимися известных задач. Оригинальность мышления - следствие глубины мышления;
- целесообразность - стремление осуществлять разумный выбор действий при решении какой-либо проблемы, постоянно ориентируясь на поставленную этой проблемой цель, а также в стремлении отыскать наиболее кратчайшие пути ее достижения;
- рациональность - склонность к экономии времени и средств для решения поставленной проблемы, стремление отыскать оптимально простое в данных условиях решение задачи, использовать в ходе решения схемы, символику и условные обозначения;
- широта - способность к формированию обобщенных способов действий, имеющих широкий диапазон переноса и применения к частным, нетипичным случаям; умение охватить проблему в целом; обобщить проблему, расширить область приложения результатов, полученных в процессе ее разрешения; умение классифицировать и систематизировать изучаемые математические факты и использовать аналогию и обобщение как методы решения задач;
- активность - постоянство усилий, направленных на решение некоторой проблемы, желание обязательно решить данную проблему, изучить различные подходы к ее решению и др.;
- критичность - умение оценить правильность выбранных путей решения поставленной проблемы, получаемые при этом результаты с точки зрения их достоверности и значимости; умение найти и исправить собственную ошибку, проследить заново все выкладки или ход рассуждения, чтобы натолкнуться на противоречие, помогающее осознать причину ошибки;
- доказательность - умение терпеливо относиться к собиранию фактов, достаточных для вынесения какого-либо суждения; стремление к обоснованию каждого шага решения задачи; умение отличать достоверные результаты от правдоподобных;
- организованность памяти - способность к запоминанию, долговременному сохранению, быстрому и правильному воспроизведению основной учебной. При обучении учащихся математике следует развивать как оперативную, так и долговременную память, обучать учащихся запоминанию наиболее существенного, общих методов и приемов решения задач, доказательству теорем; формировать умения систематизировать свои знания и опыт. Организованность памяти формируется у школьников особенно эффективно, если запоминание каких-либо фактов основано на их понимании.

Не нуждаются в особых комментариях качества научного мышления: ясность, точность, лаконичность устной и письменной речи. Совокупность всех указанных качеств мышления называют научным стилем мышления.

С развитием математики как науки и методики преподавания математики изменилось содержание, которое вкладывалось в понятие “математическое мышление”, существенно возросла роль проблемы развития мышления в процессе обучения математике. Математическое мышление является не только одним из важнейших компонентов процесса познавательной деятельности учащихся, но и таким компонентом, без целенаправленного развития которого невозможно достичь высоких результатов в овладении школьниками системой математических знаний, умений и навыков. Развитие мышления школьников тесно связано с формированием приемов мышления в процессе их учебной деятельности. Эти приемы мышления (анализ, синтез, обобщение и др.) выступают также как специфические методы научного исследования, особенно ярко проявляющиеся при обучении математике, как одного из базовых школьных предметов. Мыслительная деятельность школьников выполняется с помощью мыслительных операций: сравнения, анализа и синтеза, абстракции, обобщения и конкретизации.

Сравнение - это сопоставление объектов познания с целью нахождения сходства (выделения общих свойств) и различия (выделения особенных свойств) между ними. Эта операция лежит в основе всех других мыслительных операций.

Анализ - это мысленное расчленение предмета познаний на части.

Синтез - мысленное соединение отдельных элементов или частей в единое целое. В реальном мыслительном процессе анализ и синтез всегда выполняются совместно.

Абстракция - это мысленное выделение каких-либо существенных свойств и признаков объектов при одновременном отвлечении от всех других их свойств и признаков. В результате абстракции выделенное свойство или признак сам становится предметом мышления.

Обобщение можно рассматривать:

1) как мысленное выделение общих свойств (инвариантов) в двух или нескольких объектах и объединение

этих объектов на основе выделенной общности;

2) как мысленное выделение существенных свойств объекта в результате анализа их в виде общего понятия для целого класса объектов (научно-теоретическое общение).

Конкретизация также может выступать в двух формах:

1) как мысленный переход от общего к единичному, частному;

2) как восхождение от абстрактно-общего к частному путем выявления различных свойств и признаков объекта.

Различают три вида мышления:

1. Наглядно-действенное (познание объектов совершается в процессе практических действий с этими

объектами, характерно для детей младенческого возраста).

2. Наглядно-образное (мышление с помощью наглядных образов, свойственно детям дошкольного возраста).
3.Теоретическое мышление (в форме абстрактных понятий и суждений, характерно для детей школьного возраста).







Дата добавления: 2015-06-12; просмотров: 1741. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия