Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Одномерный дисперсионный анализ с повторным измерением





Исследуем вопрос следующего характера: наблюдаются ли в течение четырёх моментов времени значимые изменения показаний теста на внимательность. При этом необходимо учесть влияние двух факторов: пола и возраста.

В общем, в нашем распоряжении имеется три фактора: пол с двумя категориями, возраст с тремя категориями и время с четырьмя категориями. Это приводит к необходимости выполнения трёхфакторного дисперсионного анализа, в котором третий фактор (время) является фактором с повторным измерением. Этот фактор будет представлен не при помощи отдельных групп испытуемых, а при помощи значений переменных ml-m4.

  • Откройте файл varana.sav.
  • Выберите в меню Analyze (Анализ) General Linear Model (Общая линейная модель) Repeated Measures... (Повторные измерения)
  • Как уже было изложено в главе 13.4, отроется диалоговое окно Repeated Measures Define Factors(s) (Повторные измерения: Определение фактора(ов)).
  • Вместо установленного по умолчанию имени фактора factorl введите новое имя: zeit (время).
  • В поле Number of Levels (Количество слоев) введите значение 4. Щёлкните на Add (Добавить), и, если больше цет никаких факторов с повторными измерениями, покиньте диалоговое окно посредством нажатия кнопки Define (Определить).

Появится диалоговое окно Repeated Measures (Повторные измерения) (см. рис. 17.7).

  • Здесь, в первую очередь, последовательно перенесите четыре переменные повторных измерений ml-m4 в поле для внутрисубъектных переменных(Within-Subjects Variables).
  • Затем, переменные geschl (пол) и alter (возраст) перенесите в поле для межсубъектных факторов(Between-Subjects Factor(s)).
  • В диалоговом окне Options (Опции) активируйте вывод средних для трёх факторов: geschl (пол), alter (возраст) и zeit (время), в поле отображаемых результатов (Display) активируйте вывод дескриптивных статистик и, помимо этого, сделайте запрос на тест однородности.

Рис. 17.7: Диалоговое окно Repeated Measures (Повторные измерения)

  • Начните расчёт нажатием ОК.

На экране появятся довольно обширные результаты расчёта. Их расшифровка может оказаться довольно проблематичной для новичка. Поэтому ниже будет рассмотрена только та часть результатов, которая является важной для поиска ответа на вопрос: какой из трёх факторов — пол, возраст или время, оказывает значимое влияние и какие взаимодействия между этими факторами являются значимыми.

Сначала даётся сводная таблица для внутрисубъектных (время) и межсубъектных (пол и возраст) факторов. Затем выводятся дескриптивные статистики (среднее значение, стандартное отклонение, количество наблюдений) для отдельных ячеек, то есть характеристики переменных ml-m4 отдельно для пола и возрастных групп. Вывод этих показателей в книге не приводится.

Далее следуют результаты расчёта для фактора "Zeit" ("Время") и для взаимодействий с этим фактором, в основу которых положен метод общей линейной модели. Для этого были определены различные тестовые величины, которые выводятся под наименованиями: "Pillai's Trace" (След Пиллая), "Wilks' Lambda" (Лямбда Уилкса), "Hotelling's Trace" (След Хоттелинга) и "Roy's Largest Root" (Максимальный характеристический корень по методу Роя). С помощью надлежащих преобразований по этим тестовым величинам восстанавливается рампределения значение F, по которому затем определяется значение р, приводимое в колонке "Значимость" (Sig). Следует отметить, что след Пиллая ("Pillai's Trace") является наиболее сильным и устойчивым (робастным) тестом.

Результаты первых трёх тестов являются практически идентичными. Обнаружено очень значимое влияние временного фактора, а вот взаимодействия других факторов со временем, напротив, оказались не значимыми.

Одни и те же расчёты, то есть проверка временного фактора и взаимодействий со временем, производятся также при помощи традиционного "классического" метода Фишера. Соответствующие результаты можно взять из строки "Предполагается сферичность" во второй из нижеследующих таблиц, которая наряду с ними содержит ещё три варианта проверок.

Multivariate Tests c (Многомерные тесты)

Effect (Эффект) Value (Значе-ние) F Hypothesis df (Гипотеза df) Error df (Ошибка df) Sig. (Зна-чимость)
ZEIT (Время) Pillai's Trace (След Лиллая) ,955] 133,367" 3,000 19,000 ,000
Wilks' Lambda (Лямбда Уилкса) ,045 133,367" 3,000 19,000 ,000
Hotelling's Trace (След Хоттелинга) 21,058 133,367а 3,000 19,000 ,000
Roy's Largest Root (Макси-мальный характе-ристический корень по методу Роя) 21,058 133,367е 3,000 19,000 ,000
ZEIT*GESCHL (Время'Пол) Pillai's Trace (След Пиллая) ,106 ,752" 3,000 19,000 ,535
Wilks1 Lambda (Лямбда Уилкса) ,894 ,752а 3,000 19,000 ,535
Hotelling's Trace (След Хоттелинга) ,119 ,752а 3,000 19,000 ,535
Roy's Largest Root (Макси-мальный характе-ристический корень по методу Роя) ,119 ,752" 3,000 19,000 ,535
ZEIT * ALTER (Время* Возраст) Pillai's Trace (След Пиллая ,293 1,145 6,000 40,000 ,355
Лямбда Уилкса) ,710 1,183а 6,000 38,000 ,336
Hotelling's Trace (След Хоттелинга) ,404 1,213 6,000 36,000 ,322
Roy's Largest Root (Макси-мальный характе-ристический корень по методу Роя) ,394 2,625" 3,000 20,000 ,079
ZEIT * GESCHL * ALTER (Время'Пол* Возраст) Pillai's Trace (След Пиллая) ,406 1,699 6,000 40,000 ,146
Wilks1 Lambda (Лямбда Уилкса) ,622 1,699а 6,000 38,000 ,148
Hotelling's Trace (След Хоттелинга) ,564 1,691 6,000 36,000 ,151
Roy's Largest Root (Макси-мальный характе-ристический корень по методу Роя) ,468 3,118Ь 3,000 20,000 ,049
a, b, с — см. след. стр.






Дата добавления: 2015-08-30; просмотров: 454. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия