Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Алгоритм и программа разложения степени числа по правилам арифметики вычетов





 

Алгоритм разложения степени числа

 

В Delphi имеется встроенная процедура возведения числа а в степень x y:=IntPower(a,x), содержащаяся в библиотеке Math. Недостаток данной процедуры, как ранее отмечено, состоит в переполнении формата результата процедуры y в оперативной памяти компьютера при относительно небольших значениях а и х.

Разработаем собственную процедуру разложения степени числа по пра­вилам арифметики вычетов, позволяющую исключить огромные результаты промежуточных вычислений.

Для упорядочивания разложения выражения b= aХ mod n по степеням числа х результат вычисления будем записывать в переменную с, значения которой на каждой итерации разложения i определяется следующей логикой вычислений:

i=1: b= a1 mod n → с = b ();

i=2: b= a2 mod n = (a*a) mod n = ((a mod n) * (a mod n)) mod n =(b*b) mod n

c = (c*b) mod n ();

i=3: b= a3 mod n = (a2*a) mod n = ((a2 mod n) * (a mod n)) mod n =(c*b) mod n

c = (c*b) mod n ();

i=x: ().

В виде алгоритма представленная последовательность итераций приве­дена на рисунке 3.3. Согласно алгоритмы, исходный код функции разложения степени числа по правилам арифметики вычетов выгладит следующим обра­зом:

Function aXmodN(a,x,n: integer): integer;

Var i,b,c: integer;

Begin

i:=0; b:= a mod n; c:=0;

While i<x do

Begin

i:=i+1;

If i=1 then c:=b else c:= (c*b) mod n;

End;

aXmodN:=c;

end;{aXmodN}

 

Рисунок 3.3 – Алгоритм разложения степени числа

 

Таким образом, программный код вида y:=IntPower(a,x)mod n можно заменить выражением y:= aXmodN(a,x,n). Для исследования воз­можностей и преимуществ разработанной функции по сравнению с использо­ванием встроенной процедурой Delphi y:=IntPower(a,x) напишем спе­циальное приложение.

 

3.3.2.2 Приложение для исследования вариантов разложения сте­пени числа

 

Рисунок 3.4 – Экранная форма приложения для исследования фунций y:=IntPower(a,x) и y:= aXmodN(a,x,n)

Рисунок 3.5 – Компоненты экранной формы приложения

 

 







Дата добавления: 2015-08-31; просмотров: 533. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия