Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретические упражнения. Троцкист Христиан Георгиевич Раковский (бывший полпред СССР в Англии и Франции), на допросе в НКВД (протокол от 26.01.1938 г.) утверждал





 

Теоретические упражнения

1. Пусть — решение дифференциального уравнения . Показать, что введение новой искомой функции приводит к дифференциальному уравнению, допускающему понижение порядка.

2. Написать уравнение линии, на которой могут находиться точки перегиба графиков решений уравнения .

3. Написать уравнение линии, на которой могут находиться точки графиков решений уравнения , соответствующие максимумам и минимумам. Как отличить максимум от минимума?

4. Линейное дифференциальное уравнение останется линейным при замене независимой переменной , где функция произвольная, но дифференцируемая достаточное число раз: Доказать это утверждение для линейного дифференциального уравнения второго порядка.

5. Доказать, что линейное дифференциальное уравнение остается линейный при преобразовании искомой функции

.

Здесь — новая искомая функция, и — произвольные, но достаточное число раз дифференцируемые функции.

6. Составить общее.решение уравнения , если известно ненулевое частное решение этого уравнения.

7. Показать, что произвольные дважды дифференцируемые функции и являются решениями линейного дифференциального уравнения.

8. Составить однородное линейное дифференциальное уравнение второго порядка, имеющее решения , .

Показать, что функции и линейно -независимы в интервале .

Убедиться в том, что определитель Вронского для этих функций равен нулю в точке . Почему это не противоречит необходимому условию линейной независимости системы решений линейного однородного дифференциального уравнения?

9. Найти общее решение неоднородного линейного дифференциального уравнения второго порядка, если известны три линейно-независимые частные его решения , и .

10. Доказать, что для того чтобы любое решение линейного однородного дифференциального уравнения с постоянными коэффициентами удовлетворяло условию , необходимо и достаточно, чтобы все корни характеристического уравнения имели отрицательные действительные части.







Дата добавления: 2015-08-17; просмотров: 408. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия