Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расчетные задания





Задача 1. Найти общий интеграл дифференциального уравнения. (Ответ представить в виде .)

1.1. 1.2.

1.3. 1.4.

1.5. 1.6.

1.7. 1.8.

1.9. 1.10.

1.11. 1.12.

1.13. 1.14.

1.15. 1.16.

1.17. 1.18.

1.19. 1.20.

1.21. 1.22.

1.23. 1.24.

1.25. 1.26.

1.27. 1.28.

1.29. 1.30.

1.31.

 

Задача 2. Найти общий интеграл дифференциального уравнения.

2.1. 2.2.

2.3. 2.4.

2.5. 2.6.

2.7. 2.8.

2.9. 2.10.

2.11. 2.12.

2.13. 2.14.

2.15. 2.16.

2.17. 2.18.

2.19. 2.20.

2.21. 2.22.

2.23. 2.24.

2.25. 2.26.

2.27. 2.28.

2.29. 2.30.

2.31.

 

Задача 3. Найти общий интеграл дифференциального уравнения.

3.1. 3.2.

3.3. 3.4.

3.5. 3.6.

3.7. 3.8.

3.9. 3.10.

3.11. 3.12.

3.13. 3.14.

3.15. 3.16.

3.17. 3.18.

3.19. 3.20.

3.21. 3.22.

3.23. 3.24.

3.25. 3.26.

3.27. 3.28.

3.29. 3.30.

3.31.

 

Задача 4. Найти решение задачи Коши.

4.1. 4.2.

4.3. 4.4.

4.5. 4.6.

4.7. 4.8.

4.9. 4.10.

4.11. 4.12.

4.13. 4.14.

4.15. 4.16.

4.17. 4.18.

4.19. 4.20.

4.21. 4.22.

4.23. 4.24.

4.25. 4.26.

4.27. 4.28.

4.29. 4.30.

4.31.

 

Задача 5. Решить задачу Коши.

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

5.20.

5.21.

5.22.

5.23.

5.24.

5.25.

5.26.

5.27.

5.28.

5.29.

5.30.

5.31.

Задача 6. Найти решение задачи Коши.

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

6.13.

6.14.

6.15.

6.16.

6.17.

6.18.

6.19.

6.20.

6.21.

6.22.

6.23.

6.24.

6.25.

6.26.

6.27.

6.28.

6.29.

6.30.

6.31.

 

Задача 7. Найти общий интеграл дифференциального уравнения.

7.1.

7.2.

7.3.

7.4.

7.5.

7.6.

7.7.

7.8.

7.9.

7.10.

7.11.

7.12.

7.13. 7.14.

7.15. 7.16.

7.17.

7.18. 7.19.

7.20.

7.21.

7.22.

7.23.

7.24.

7.25.

7.26.

7.27.

7.28.

7.29.

7.30.

7.31.

Задача 8. Для данного дифференциального уравнения методом изоклин построить интегральную кривую, проходящую через точку .

8.1. 8.2.

8.3. 8.4.

8.5. 8.6.

8.7. 8.8.

8.9. 8.10.

8.11. 8.12.

8.13. 8.14.

8.15. 8.16.

8.17. 8.18.

8.19. 8.20.

8.21. 8.22.

8.23. 8.24.

8.25. 8.26.

8.27. 8.28.

8.29. 8.30.

8.31.

Задача 9. Найти линию, проходящую через точку и обладающую тем свойством, что в любой ее точке нормальный вектор с концом на оси имеет длину, равную , и образует острый угол с положительным направлением оси .

9.1. 9.2.

9.3. 9.4.

9.5.

Найти линию, проходящую через точку , если отрезок любой ее касательной между точкой касания и осью делится в точке пересечения с осью абсцисс в отношении (считая от оси ).

9.6. 9.7.

9.8. 9.9.

9.10.

Найти линию, проходящую через точку , если отрезок любой ее касательной между точкой касания и осью делится в точке пересечения с осью абсцисс в отношении (считая от оси ).

9.11. 9.12.

9.13. 9.14.

9.15.

Найти линию, проходящую через точку , если отрезок любой ее касательной, заключенный между осями координат, делится в точке касания в отношении (считая от оси ).

9.16. 9.17.

9.18. 9.19.

9.20.

Найти линию, проходящую через точку и обладающую тем свойством, что в любой ее точке касательный вектор с концом на оси имеет проекцию на ось , обратно пропорциональную абсциссе точки . Коэффициент пропорциональности равен .

9.21. 9.22.

9.23. 9.24.

9.25.

Найти линию, проходящую через точку и обладающую тем свойством, что в любой ее точке касательный вектор с концом на оси имеет проекцию на ось , равную .

9.26. 9.27.

9.28. 9.29.

9.30. 9.31.

 

Задача 10. Найти общее решение дифференциального уравнения.

10.1. 10.2.

10.3. 10.4.

10.5. 10.6.

10.7. 10.8.

10.9. 10.10.

10.11. 10.12.

10.13. 10.14.

10.15. 10.16.

10.17. 10.18.

10.19. 10.20.

10.21. 10.22.

10.23. 10.24.

10.25. 10.26.

10.27. 10.28.

10.29. 10.30.

10.31.

 

Задача 11. Найти решение задачи Коши.

11.1.

11.2.

11.3.

11.4.

11.5.

11.6.

11.7.

11.8.

11.9.

11.10.

11.11.

11.12.

11.13.

11.14.

11.15.

11.16.

11.17.

11.18.

11.19.

11.20.

11.21.

11.22.

11.23.

11.24.

11.25.

11.26.

11.27.

11.28.

11.29.

11.30.

11.31.

 

Задача 12. Найти общее решение дифференциального уравнения.

12.1. 12.2.

12.3. 12.4.

12.5. 12.6.

12.7. 12.8.

12.9. 12.10.

12.11. 12.12.

12.13. 12.14.

12.15. 12.16.

12.17. 12.18.

12.19. 12.20.

12.21. 12.22.

12.23. 12.24.

12.25. 12.26.

12.27. 12.28.

12.29. 12.30.

12.31.

 

Задача 13. Найти общее решение дифференциального уравнения.

13.1.

13.2.

13.3.

13.4.

13.5.

13.6.

13.7.

13.8.

13.9.

13.10.

13.11.

13.12.

13.13.

13.14.

13.15.

13.16.

13.17.

13.18.

13.19.

13.20.

13.21.

13.22.

13.23.

13.24.

13.25.

13.26.

13.27.

13.28.

13.29.

13.30.

13.31.

 

Задача 14. Найти общее решение дифференциального уравнения.

14.1. 14.2.

14.3. 14.4.

14.5. 14.6.

14.7. 14.8.

14.9. 14.10.

14.11. 14.12.

14.13. 14.14.

14.15. 14.16.

14.17. 14.18.

14.19. 14.20.

14.21. 14.22.

14.23. 14.24.

14.25. 14.26.

14.27. 14.28.

14.29. 14.30.

14.31.

 

Задача 15. Найти общее решение дифференциального уравнения.

15.1.

15.2.

15.3.

15.4.

15.5.

15.6.

15.7.

15.8.

15.9.

15.10.

15.11.

15.12.

15.13.

15.14.

15.15.

15.16.

15.17.

15.18.

15.19.

15.20.

15.21.

15.22.

15.23.

15.24.

15.25.

15.26.

15.27.

15.28.

15.29.

15.30.

15.31.

 

Задача 16. Найти решение задачи Коши.

16.1.

16.2.

16.3.

16.4.

16.5.

16.6.

16.7.

16.8.

16.9.

16.10.

16.11.

16.12.

16.13.

16.14.

16.15.

16.16.

16.17.

16.18.

16.19.

16.20.

16.21.

16.22.

16.23.

16.24.

16.25.

16.26.

16.27.

16.28.

16.29.

16.30.

16.31.







Дата добавления: 2015-08-17; просмотров: 615. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия