Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Порядок проведения работы. Моделируется продувка в 250-т кислородном конвертере через одно‑, трех- и шестисопловые фурмы с расходом дутья





Моделируется продувка в 250-т кислородном конвертере через одно‑, трех- и шестисопловые фурмы с расходом дутья, эквивалентным рабочему режиму продувки в промышленном конвертере. Расход дутья (режим продувки) на всех опытах постоянный. Исходные данные для работы приведены в табл. 2.1.

 

Таблица 2.1. – Варианты режимов продувки

Объект исследования Расход газа при удельной интенсивности продувки, м3/т×мин
3,0 3,25 3,5 3,75 4,0 4,25 4,5 4,75 5,0 5,25 5,5
Расход кислорода в 250-т конвертере                      
Модель в масштабе 1:25                      
Расход газа по ротаметру                      

 

Расход дутья в модели рассчитывают по формуле:

 

, (2.1)

где V ¢г – расход дутья на модели, м3/мин;

V г – расход кислорода (при нормальных условиях) в реальном конвертере, м3/мин;

r ¢ж – плотность модельной жидкости, кг/м3;

r ж – плотность жидкого металла, кг/м3;

r ¢г – плотность газа, используемого на модели, кг/м3;

r г – плотность технически чистого кислорода, кг/м3;

Рисунок 2.3 – Перевод расхода газа по ротаметру (условных единиц) в натуральную величину, л/мин.

L – масштаб модели (1:25).

Учитывая, что расход газа по ротаметру приводится в условных единицах (от 0 до 100), необходимо расход газа (в литрах) перевести в условные единицы. Пользуясь графиком (рис. 2.3), переводим расход газа (в литрах) в расход газа в условных единицах по ротаметру.

После определения расхода газа в модели определяется положение сопла (в мм) над уровнем спокойной ванны:

(2.2)

где d с – диаметр сопла, мм;

n к – число калибров (принимается по данным таблицы 2.2).

Таблица 2.2 – Положение фурмы над уровнем спокойной ванны

Конструкция сопла Вариант продувки Положение фурмы над соплом, число калибров (n к)
                   
Одно-, трех-, шести-сопловые фурмы                      
                     
                     
                     
                     
                     

 

После определения необходимых данных по режиму продувки – расхода газа, (л/мин); положения фурмы над уровнем спокойной ванны (мм) – производится подготовка лабораторной установки к работе. Заливается вода до необходимого уровня (200-300 мм). Включается компрессор. Проверяется работа приборов, вентилей и др. оборудования.

При выполнении работы группой студентов распределяются обязанности между ними:

- первый студент стоит у вентиля 5 и подает и поддерживает необходимый расход газа на фурму, определяемый по ротаметру 10;

- второй студент устанавливает положение фурмы над уровнем спокойной ванны по измерительной линейке 11;

- третий студент производит измерения размеров продувочной зоны: глубину лунки и диаметр продувочной зоны;

- четвертый студент заносит результаты измерений в таблицу 2.3;

- пятый студент делает эскиз формы продувочной зоны.

Все студенты этой подгруппы, кроме выполнения своих прямых обязанностей, производят наблюдения за поведением газовой струи в жидкости.

Убедившись, что лабораторная установка в рабочем состоянии, начинается постановка экспериментов. Исследуемую фурму (вначале односопловую) устанавливают на уровень нуль калибров от поверхности жидкости и начинают постановку опытов.

В процессе проведения опытов, медленно открывая вентиль 5, подают газ на фурму до достижения требуемого расхода, отмечаемого на шкале ротаметра 10, затем плавным поворотом вентиля (при необходимости) поддерживают необходимый расход газа на заданном значении в течение опыта. После стабилизации дутьевого режима, осуществляется наблюдение за газовой струей в жидкости. Для каждого значения положения фурмы замеряют глубину и диаметр лунки и дают ей качественное описание (конфигурация лунки, характеристика поверхности, наличие или отсутствие пузырей на ней, проявление брызг, интенсивность пульсации поверхности и т.д.), делается эскиз формы лунки (кратера). Для упрощения расчета форма образующейся лунки (кратера) идеализируется в виде шарового сегмента или усеченного конуса в сочетании с шаровым сегментом (рис. 2.4).

Рисунок 2.4. Форма кратера лунки: а) шаровый сегмент; б) сочетание усеченного конуса с шаровым сегментом.

 

Размеры лунки (кратера) и глубина внедрения струи определяются с помощью мерной линейки. Затем, не изменяя рассчитанного расхода дутья, фурму поднимают над поверхностью ванны последовательно на следующие уровни и производят аналогичные замеры и зарисовки продувочной зоны. Результаты наблюдений заносят в таблицу 2.3., измерения проводят при 5-6 положениях фурмы над уровнем спокойной ванны и постоянном расходе газа.


Таблица 2.3 – Результаты измерений и наблюдений

№ п/п Положение сопла над ванной Форма лунки Параметры лунки
Число калибров мм h л, мм D л, мм D 1, мм V л,см
Односопловая фурма
      Шаровый сегмент        
             
      У.К.+Ш.С.        
             
             
             
Трехсопловая фурма
      Ш.С.        
      Ш.С.        
      Ш.С.+У.К.        
             
             
             
Шестисопловая фурма
      Ш.С.        
      Ш.С.        
      Ш.С.+У.К.        
             
             
             

 

Для всех исследованных режимов подачи газа в жидкость зарисовывается лунка для одно-, трех- и шестисопловой фурм, составляется таблица "эскизы взаимодействия струй газа с жидкостью" – расход газа и положение фурмы. Результаты должны быть сгруппированы в три группы – по типам фурм.

 







Дата добавления: 2015-08-17; просмотров: 521. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия