Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Повышение надежности при проектировании





При создании и эксплуатации автоматических систем необхо­димо стремиться обеспечить заданную, а иногда и максимальную надежность системы при эксплуатации. Однако в практике созда­ния сложных автоматических систем в большинстве случаев не удается, не только получить максимальную надежность, но и обеспечить даже при обычном подходе к проектированию и экс­плуатации минимальную требуемую надежность системы. Поэтому при создании и эксплуатации систем необходимо принимать спе­циальные меры, направленные на повышение надежности систем. Способы повышения надежности автоматических систем весьма многообразны и требуют от лиц, создающих системы, как широких научных и теоретических зна­ний, так и инженерного искусства, большого опыта и т. д.

Есте­ственно, что детально рассмотреть все многообразие мер и спосо­бов повышения надежности весьма трудно и это связано было бы с освещением большого количества узконаправленных задач. Учи­тывая это обстоятельство, в настоящем параграфе будут рассмот­рены общие методы и принципы повышения надежности автомати­ческих систем. Изучение общих методов и принципов повышения надежности автоматических систем имеет также свои положитель­ные стороны, обеспечивающие развитие правильных и перспек­тивных направлений создания высоконадежных систем, без чего могут стать малоэффективными правильные решения более узких практических вопросов.

В соответствии с тремя главными фазами, которые проходит каждая система, будем рассматривать три метода повышения на­дежности систем: при проектировании, производстве и эксплу­атации.

Следует отметить, что только объединенными мерами на каж­дой из этих фаз можно добиться высокой надежности создаваемой и эксплуатируемой системы. Тем не менее, решающее влияние на надежность автоматических систем оказывает фаза проектиро­вания.

При проектировании системы выбирается принцип ее ра­боты и структура. Осуществляется конструктивная разработка отдельных узлов и приборов и т. д., Если на стадии проек­тирования не будут учитываться вопросы, связанные с надеж­ностью системы, и тем более, если будут допущены неточности, то обеспечить надежность системы за счет мер, принимаемых на двух последующих фазах (производстве и эксплуатации), весьма трудно. Это потребует больших материальных затрат, а в неко­торых случаях даже практически невозможно. Прежде всего, при проектировании системы необходимо обеспечить требуемый уровень безотказности системы.

Проектирование системы начинается с выбора принципа работы системы. На этой стадии проектирования главное внимание должно быть обращено на выбор наиболее простой системы, имеющей по возможности наименьшее число элементов и связей между ними. Это требование подтверждается тем, что в нерезервированных системах вероятность отказа системы в первом приближении про­порциональна количеству элементов.

Наряду с выбором простой схемы, оцениваемой приближенно по количеству элементов, большое влияние на безотказность си­стемы имеет выбор стабильной схемы. В стабильной по принципу действия схеме обычно наблюдаются минимальные связи между параметрами отдельных элементов, а также обеспечивается мини­мальное влияние отклонений параметров элементов на величину ошибки в выходной величине системы.

Таким образом, выбор про­стой и стабильной по принципу действия схемы является одной из главных мер обеспечения высокой безотказности системы как при внезапных, так и при постепенных отказах.

Иногда выбор простой по количеству элементов и в то же время стабильной схемы связан с преодолением определенных противоречий. В качестве примера можно привести задачу проектирования усилительного устройства системы. Известно, что для обеспечения стабильности коэффициента усиления в автоматических системах применяются отрицательные обратные связи.

Применение отрицательной обратной связи для получения тре­буемого общего заданного коэффициента усиления связано с уве­личением числа каскадов в разомкнутой цепи усиления, т. е. с уве­личением общего количества элементов системы. Таким образом, повышение стабильности коэффициента усиления приводит к уве­личению потенциальной возможности внезапного отказа в схеме.

Вероятность отказа нерезервированной системы в первом при­ближении равна сумме вероятностей отказов элементов. Следова­тельно, безотказность нерезервированных систем зависит не только от количества элементов, но и от качества элементов. Для обеспе­чения высокой безотказности при проектировании системы надо выбирать наиболее качественные и перспективные элементы.

В свою очередь показатели безотказности элементов зависят в сильной сте­пени от режимов работы элементов. Поэтому при проектировании для повышения безотказности системы режимы работы элементов можно выбирать значительно меньшими, чем номинальные, при этом степень уменьшения нагрузок зависит от конкретных задач.

Большое влияние на безотказность системы оказывают условия ее работы, а именно: воздействующие на систему и элементы меха­нические, климатические нагрузки и т. д. При проектировании системы необходимо максимально уменьшить влияние внешних и внутренних нагрузок на систему и ее элементы. Эта задача в основном решается правильным выбором конструкции узлов, приборов и системы в целом.

В качестве дополнительных конструк­тивных мер, обеспечивающих повышение безотказности, можно указать на методы снижения влияния механических нагрузок пу­тем применения специальных конструктивных форм устройств, амортизаторов и т. д. Влияние климатических “нагрузок” может быть в значительной степени ослаблено при правильном конструк­тивном оформлении узлов и блоков, например, с таким расчетом, чтобы обеспечить повышенную теплоотдачу (искусственное охлаж­дение), защиту от влаги (герметизация).

При разработке схемы и конструкции должны также быть пред­усмотрены меры, позволяющие повысить надежность системы при эксплуатации, а именно: блочная конструкция системы, примене­ние стандартных и унифицированных узлов и блоков, удобство про­верок и обслуживания и др.

Таким образом, на стадии проектирования надежность нерезер­вированной системы обеспечивается следующими основными мето­дами:

1) выбором простых и стабильных схем, учитывающих также возможности повышения надежности системы при эксплуатации;

2) применением качественных и перспективных элементов и вы­бором режимов работы элементов, соответствующих пониженным электрическим нагрузкам;

3) разработкой конструкции системы и приборов, обеспечиваю­щей минимальные нагрузки на систему и элементы, а также удоб­ство обслуживания системы.

 

Рекомендуемая литература для дополнительного чтения:

 

1. Надежность АСУ. Учеб. пособие для ВУЗов. / под ред. Я.А. Хетагурова. – М.: Высшая школа, 1979. – 287 с.

2. Курочкин Ю.А. Надежность и диагностирование цифровых устройств и систем. – М.: Энергоатомиздат, 1993. – 240 с.

3. Северцев Н.А. Надежность систем в эксплуатации и отработке. Учебник для ВУЗов. – М.: Энергоатомиздат, 1989. – 140 с.


8.7.2 Повышение надежности при эксплуатации

 

Если в результате проектирования нерезервированной системы не удается обеспечить требуемую безотказность, можно применять следующие методы повышения надежности системы при эксплуатации:

1) обратные связи;

2) резервирование.

Применение отрицательных обратных связей позволяет стаби­лизировать параметры отдельных узлов, блоков и приборов си­стемы, т. е. уменьшать вероятность отказа системы вследствие постепенных отказов. В ряде случаев полезно применять положи­тельные обратные связи.

Повышение надежности изделий и систем может быть достигнуто с по­мощью резервирования.

Резервиро­вание бывает информационное, временное, функциональное, аппа­ратурное и структурное. Рассмотрим два последних вида резерви­рования. Аппаратурное резервирование обеспечивается примене­нием нескольких одинаковых устройств для достижения заданной цели, например, прием и запись уникальной информации одновре­менно на 2—3 устройства. Структурное (схемное) резервирование состоит в применении специальных схем соединений основного и резервного элементов.

Используют поэлементное резервирование и резервирование всей цепи основных элементов (нагруженный резерв) (рис. 8.1 а, б). В полностью резер­вированной системе отказ одного или нескольких элементов не приводит к отказу всей системы. При постоянном резервировании, которое иногда называют пас­сивным, резервные устройства постоянно включены в схему, при этом до момента ремонта включенными в схему остаются и отка­завшие устройства. Постоянное резервирование отличается просто­той схем, возможностью применения к различным конструкциям (системам, приборам, узлам, элементам) и даже к внутриэлементным связям. Наиболее эффективно постоянное резервирование для элементов и внутриэлементных связей.

Существенным недостатком постоянного резервирования яв­ляется изменение параметров схемы и режимов работы при отказах резервных устройств, что в некоторых случаях недопустимо. Опре­деленные технические трудности встречаются также при резерви­ровании устройств, характеризующихся двумя типами отказов (обрыв и короткое замыкание). Кроме того, для ряда устройств автоматических систем постоянное резервирование технически трудно осуществить, а в некоторых случаях даже невозможно.

Как и всякому способу повышения безотказности, связанному с приме­нением большего количества элементов, чем это требуется функ­циональной схемой, постоянному резервированию присущи также недостатки, связанные с увеличением веса, объема, стоимости аппа­ратуры и усложнением эксплуатации. Вес системы с постоянным резервированием может быть значительно уменьшен благодаря применению микроминиатюрных и молекулярных элементов.

 

 

 

Рис. 8.1 Схемы резервирования:

а — поэлементного; б — общего; в — поэлементного замещением; г

общего замещением; д — мажоритарного; ОЭ — основной элемент;

РЭ — резервный элемент

 

Резервирование с поэлементным замещением (ненагруженный резерв). Достоинство — в сохранении ресурса резервных элементов. Недостаток — в дополнительной возможности отказа переклю­чающего элемента (рис. 8.1 в).

Резервирование с общим замещением (ненагруженный резерв (рис. 8.1 г)). Общее правило, которое можно применять в схемном резервировании, гласит: чем мельче масштаб резервирования, тем больше надежность.

Широко используется схема мажоритарного резервирования, которая носит также название «схема голосования из трех по два». Неисправный канал автоматически исключается из линии передачи информации (рис. 8.1 д).

Резервирование осуществляют также с применением логических схем. Такое резервирование называют активным. Применение логиче­ских схем обеспечивает неизменность параметров схемы при отка­зах элементов, повышает безотказность системы при их использова­нии для устройств, характеризующихся отказами двух типов, позволяет сохранять ресурс резервных устройств, находящихся в ре­жиме ожидания в ненагруженном состоянии. Резервирование с ло­гическими схемами неизбежно связано с применением дополни­тельных устройств в виде индикаторов отказа, переключателей и т. д.

Надежность автоматической системы может в значительной степени снизиться также под воздействием внешних помех, пере­межающихся или самовосстанавливающихся отказов и др., приво­дящих к искажению передаваемой информации. В этих случаях эффективным средством повышения надежности систем является применение, особенно в дискретных информационных системах, самокорректирующих кодов и избыточности передаваемой инфор­мации. Применение того или иного метода резервирования зависит от конкретных условий, от назначения и особенностей работы системы.

В общем случае невозможно применением только одного метода резервирования добиться высокой надежности автоматиче­ской системы. Высокая надежность системы может быть обеспечена только в результате комбинированного применения методов резервирова­ния. Одним из направлений создания высоконадежных автомати­ческих систем на основе комбинированных методов резервирова­ния является применение самонастраивающихся и самооргани­зующихся систем. При помощи постоянного резервиро­вания можно обеспечить функционирование системы с вероят­ностью, весьма близкой к единице. Однако при отказах резервных элементов в значительной степени могут измениться выходные параметры, при этом отклонения параметров могут быть такими, что, несмотря на отсутствие отказа системы, она не удовлетворяет предъявляемым требованиям. Комбинированное применение по­стоянного резервирования и метода самонастройки параметров при отказе резервных элементов позволяет избежать недостатков, присущих только постоянному резервированию. Еще большие возможности повышения надежности могут пред­ставиться в результате применения самоорганизующихся систем, в которых при отказах отдельных элементов или изменении внеш­них условий изменяется структура системы, перераспределяются функции между ее отдельными элементами.

Одним из наиболее важных средств обеспечения высокой без­отказности системы на стадии эксплуатации является строгое соблюдение условий технологических процессов. Соблюдение установлен­ных технологических процессов должно начинаться с входного контроля материалов и изделий, применяемых в системе, обеспечении при необходимости качественной замены материалов. В ряде случаев причиной низкой безотказности выпускаемых систем мо­жет быть загрязненное содержание оборудования и рабочих мест. Важным методом повышения безотказности систем является пра­вильная организация производственного контроля и уровень культуры производства.

Особый вред качеству системы наносится скрытыми производ­ственными дефектами в результате нарушения технологического процесса. Обычно скрытые дефекты представляют наибольшие технические трудности при производственном контроле.

Наряду с производственным контро­лем безотказность сложных систем может быть существенно повышена, особенно для начального периода эксплуатации, прове­дением тренировочных испытаний системы (приработки) в произ­водственных условиях. Это позволяет устранить большинство производственных и скрытых отказов, если приработка системы проходит при больших, по сравнению с номи­нальными, нагрузками.

Правильная организация эксплуатации системы является одним из решающих факторов обеспечения высокой надежности. Большое значение имеет и своевременное проведение профилакти­ческих мероприятий, позволяющих предупредить появление отка­зов системы в рабочий период времени. Одним из современных методов профилактики является прогнозирование отказов, позво­ляющее своевременно заменить так называемые кри­тические элементы и тем самым исключить их отказы. Естественно, что полностью исключить отказы в рабочий период не удается, поэтому необходимо проектировать систему и правила ее эксплуа­тации таким образом, чтобы обеспечить минимальное время вос­становления отказавшей системы. В этой связи большое значение имеет разработка схем автоматической проверки и обнаружения отказов (системы диагностирования), а также, если это возможно, и схем самовосстановления отказов.

Из эксплуатационных факторов важная роль в поддер­жании высокой надежности автоматических систем принадлежит обслуживающему персоналу, его технической подготовке, опыту и другим качествам.

Большое значение для повышения надежности системы имеет организация эксплуатации, в частности снабжение систем запас­ными элементами и материалами, техническими описаниями и ин­струкциями по эксплуатации, организация ремонтных органов и др.

Таким образом, высокая надежность автоматических систем может быть обеспечена только комплексом методов, применяемых на всех фазах создания и эксплуатации системы.

 

 

Рекомендуемая литература для дополнительного чтения:

 

1. Надежность АСУ. Учеб. пособие для ВУЗов. / под ред. Я.А. Хетагурова. – М.: Высшая школа, 1979. – 287 с.

2. Курочкин Ю.А. Надежность и диагностирование цифровых устройств и систем. – М.: Энергоатомиздат, 1993. – 240 с.

3. Северцев Н.А. Надежность систем в эксплуатации и отработке. Учебник для ВУЗов. – М.: Энергоатомиздат, 1989. – 140 с.

 


 







Дата добавления: 2015-08-17; просмотров: 2133. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия