Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Распределение обуви, проданной коммерческой фирмой в январе 2008г.





 
 


1.

 

       
   
 


2.

       
   

 


3.

 

 

 
 


 

 

       
   
 
 


4.

 

 

           
 
 
     
 

 

 


5.

 

 

 
 

 

ХАРАКТЕРИСТИКИ ВАРИАЦИОННОГО РЯДА. СТРУКТУРНЫЕ СРЕДНИЕ

Мода – значение признака, наиболее часто встречающегося в исследуемой совокупности.

Медиана – значение признака, приходящееся на середину ранжированной (упорядоченной) совокупности.

Для дискретных вариационных рядов модой будет значение варианта с наибольшей частотой. Вычисление медианы в дискретных рядах распределения имеет специфику. Если такой ряд распределения имеет нечётное число членов, то медианой будет вариант, находящийся в середине ранжированного ряда. Если ранжированный ряд распределения состоит из чётного числа членов, то медианой будет средняя арифметическая из двух значений признака, расположенных в середине ряда.

Пример. Рассчитаем моду и медиану по данным табл. 7.10.

Т а б л и ц а 7.10.

Распределение обуви, проданной коммерческой фирмой в январе 2008г.

Размер             Me   42 Mo   44 и более Итого
Количество проданных пар, % к итогу                        
Накопленные частоты                       -

В этом ряду распределения мода равна 42. Именно этот размер обуви в январе 2008 г. пользовался наибольшим спросом.

Для определения медианы надо подсчитать сумму накопленных частот ряда. Наращивание продолжается до получения накопленной суммы частот, впервые превышающей половину. В нашем примере сумма частот составила 100, её половина – 50. Накопленная сумма частот ряда равна 62. Ей соответствует значение признака равное 40. Таким образом, 40-й размер обуви является медианным.

Для интервальных вариационных рядов мода определяется по формуле:

где xMo – нижняя граница значения интервала, содержащего моду;

iMo – величина модального интервала;

fMo – частота модального интервала;

fMo–1 – частота интервала, предшествующего модальному;

fMo+1 – частота интервала, следующего за модальным.

Медиана интервального ряда распределения определяется по формуле:

,

где xMe – нижняя граница значения интервала, содержащего медиану;

iMe – величина медианного интервала;

∑f – сумма частот;

SMe-1 – сумма накопленных частот, предшествующих медианному интервалу;







Дата добавления: 2015-08-17; просмотров: 552. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия