Вывод основного уравнения упругого режима
Считаем пласт упругим, горизонтальным и большой протяженности и в нём имеется одна скважина, тогда движение жидкости в пласте можно считать плоскорадиальным к точечному стоку (эксплуатационная скважина) или от точечного источника (нагнетательная скважина). Рассмотрим процесс перераспределения давления при неустановившимся плоском радиальном движении жидкости. Для этого запишем уравнение пьезопроводности в цилиндрической системе координат
Предположим, что возмущение вызвано мгновенным стоком, существовавшим в момент t=t/. Для этого случая решение уравнения (5.12) имеет вид
где А и С - некоторые постоянные. Найдём значения постоянных. Для этого будем считать, что в момент времени t=t/ давление в пласте было р=рк=const. Тогда при r>0 и при t=t/ второй член правой части обращается в неопределённость типа ¥/¥ и определяется по правилу Лапиталя, что даёт С=рк Таким образом,
Для определения коэффициента А воспользуемся соотношением (5.4) для определения объёма высвобождающейся жидкости для случая кольцевого элемента пласта с внутренним радиусом r, толщиной h и шириной dr, а также учтем падение давления Dр=p0-p по (5.14) dtз=b*Dрdt0 = . После интегрирования (5.15) в пределах от 0 до ¥ получим объём жидкости t2, выделившейся из всего пласта и, следовательно, определим коэффициент А
Т.о. в случае скважины, введенной в неограниченный пласт в некоторый (начальный) момент времени и действующей мгновенно, изменение давления во времени определяется соотношением
Если скважина была введена в некоторый момент времени и действовала непрерывно с постоянным дебитом Q=Q0 в течении времени dt/, то за этот промежуток времени через сток выделяется из пласта объём dt2=Qdt/ и, следовательно, из (5.17) следует
Интеграл правой части носит название интегрально-показательной функции и с учетом данного обозначения решение для изменения давления запишется в виде
Формула (5.19) является основной формулой теории упругого режима пласта.
Интегрально-показательная функция имеет вид (рис.5.1) и обладает следующими свойствами: * - Ei(-u) изменяется от 0 до ¥ при изменении аргумента от 0 до ¥; * функция - Ei(-u) представляется в виде сходящегося ряда
Для малых значений u <1 можно принять
Так погрешность применения (5.21) не превышает 0,25% при u <0,01; 5,7% - при u <0,1
С учетом соотношения (5.21) основное уравнение (5.19 перепишется в виде
Полученную зависимость можно использовать при числе Фурье
Рассмотрим пьезометрические кривые для бесконечного пласта, который эксплуатируется скважиной радиуса rc c постоянным дебитом Q0 (рис.5.2). Для точек вблизи забоя можно пользоваться формулой (5.23): дифференцируя её по координате r, найдём градиент давления
Из этой формулы следует, что градиент давления для значений r, удовлетворяющих неравенству r2<<0,03.4kt, практически не завист от времени и определяется по той же формуле, что для установившейся плоскорадиальной фильтрации несжимаемой жидкости. Для указанных значений r пьезометрические кривые представляют собой логарифмические линии (рис.5.2). Углы наклона касательных на забое скважины одинаковы для всех кривых.
|