Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вывод основного уравнения упругого режима





 

Считаем пласт упругим, горизонтальным и большой протяженности и в нём имеется одна скважина, тогда движение жидкости в пласте можно считать плоскорадиальным к точечному стоку (эксплуатационная скважина) или от точечного источника (нагнетательная скважина).

Рассмотрим процесс перераспределения давления при неустановившимся плоском радиальном движении жидкости. Для этого запишем уравнение пьезопроводности в цилиндрической системе координат

. 5.12

Предположим, что возмущение вызвано мгновенным стоком, существовавшим в момент t=t/. Для этого случая решение уравнения (5.12) имеет вид

, 5.13

где А и С - некоторые постоянные.

Найдём значения постоянных. Для этого будем считать, что в момент времени t=t/ давление в пласте было р=рк=const. Тогда при r>0 и при t=t/ второй член правой части обращается в неопределённость типа ¥/¥; и определяется по правилу Лапиталя, что даёт С=рк Таким образом,

, 5.14

Для определения коэффициента А воспользуемся соотношением (5.4) для определения объёма высвобождающейся жидкости для случая кольцевого элемента пласта с внутренним радиусом r, толщиной h и шириной dr, а также учтем падение давления Dр=p0-p по (5.14)

dtз=b*Dрdt0 = . 5.15

.

После интегрирования (5.15) в пределах от 0 до ¥; получим объём жидкости t2, выделившейся из всего пласта и, следовательно, определим коэффициент А

. 5.16

Т.о. в случае скважины, введенной в неограниченный пласт в некоторый (начальный) момент времени и действующей мгновенно, изменение давления во времени определяется соотношением

, 5.17

 

Если скважина была введена в некоторый момент времени и действовала непрерывно с постоянным дебитом Q=Q0 в течении времени dt/, то за этот промежуток времени через сток выделяется из пласта объём dt2=Qdt/ и, следовательно, из (5.17) следует

, 5.18

 

Интеграл правой части носит название интегрально-показательной функции

и с учетом данного обозначения решение для изменения давления запишется в виде

, 5.19

 

Формула (5.19) является основной формулой теории упругого режима пласта.

 

Интегрально-показательная функция имеет вид (рис.5.1) и обладает следующими свойствами:

* - Ei(-u) изменяется от 0 до ¥ при изменении аргумента от 0 до ¥;

* функция - Ei(-u) представляется в виде сходящегося ряда

 

5.20

Для малых значений u <1 можно принять

5.21

Так погрешность применения (5.21) не превышает 0,25% при u <0,01; 5,7% - при u <0,1

 

. 5.22

 

С учетом соотношения (5.21) основное уравнение (5.19 перепишется в виде

, 5.23

 

Полученную зависимость можно использовать при числе Фурье с погрешностью не превышающей 0,6%. Практически это означает, чтоуже через 1 с после пуска скважины расчеты забойного давления, выполненные по формуле (5.23), будут иметь погрешность не превышающую 0,6%. Формулу (5.23) можно использовать и для расчета падения давления в конечном пласте, а именно, погрешность расчета давления при этом не превышает 1%, если rк >1000rc и fo <3,5.105 или Fo <0,35.

 

Рассмотрим пьезометрические кривые для бесконечного пласта, который эксплуатируется скважиной радиуса rc c постоянным дебитом Q0 (рис.5.2). Для точек вблизи забоя можно пользоваться формулой (5.23): дифференцируя её по координате r, найдём градиент давления

.

 

Из этой формулы следует, что градиент давления для значений r, удовлетворяющих неравенству r2<<0,03.4kt, практически не завист от времени и определяется по той же формуле, что для установившейся плоскорадиальной фильтрации несжимаемой жидкости. Для указанных значений r пьезометрические кривые представляют собой логарифмические линии (рис.5.2). Углы наклона касательных на забое скважины одинаковы для всех кривых.

 







Дата добавления: 2015-08-17; просмотров: 498. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия