Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тест N 1





Уважаемые студенты!

В соответствии с программой курса высшей математики в первом семестре для вас подготовлены 5 контрольных работ «Проверь себя» (с ответами). Выполнение этих работ будет хорошей подготовкой к текущим и экзаменационному тестам по высшей математике.

 

1. Линейная алгебра
Условия задач Ответы
  Вычислить: . – 10
  Вычислить: . – 1
  Дана система уравнений Найти .
  Решить систему уравнений, приняв в качестве базисных переменных и : .
  . Какие произведения существуют? Указать все случаи. А) ; Б) ; В) ; Г) ; Д) ; Е) . Б, В
  Вычислить: .
  Какие матрицы имеют обратные? Указать все случаи. А) ; Б) ; В) ; Г) . А,В
 
 
  Найти ранг матрицы .  
  Какие матрицы имеют ранг, равный 2? Указать все случаи. А= ; Б= ; В= ; Г= . Б,Г
  Пусть система п линейных уравнений содержит k неизвестных, A - матрица коэффициентов при неизвестных, B - расширенная матрица. Выбрать все верные утверждения: cистема уравнений имеет единственное решение, если А) rang А < rang В; Б) rang А = rang В = k;В) rang А = rang В = n; Г) rang А = rang В; Д) rang А = rang В < k. Б  
  Указать все верные утверждения: если ранг матрицы равен k, то А) все миноры порядка k не равны 0; Б) равны нулю все миноры порядка < k; В) равны нулю все миноры порядка > k. В
 

2. Векторная алгебра
Условия задач Ответы
  Найти орт вектора .
  Вектор составляет с координатными осями Ox и Oz углы , а с осью Oy – острый угол . Найти .
  Вектор параллелен вектору . Найти .  
  Векторы и образуют угол . Найти , если .
   
  Вычислить , если –19
  . Найти .
  Определить , при котором ортогональны векторы и .  
  Найти , если 1,2
  Вычислить , если а угол между векторами и равен .  
  Векторы и образуют угол . Зная, что , найти .
  Вычислить .
  Найти площадь параллелограмма, построенного на векторах и , как на сторонах.  
  Найти площадь треугольника с вершинами в точках А(1;1;1), В(4;0;1), С(2;3;1). 3,5
  Вычислить смешанное произведение если , . – 18
  Найти объем параллелепипеда, построенного на векторах  
  Найти объем треугольной пирамиды с вершинами в точках , , , .  
  Определить, при каком компланарны векторы
  Какие равенства верны? Указать все варианты. А) ; Б) ; В) . А,Б
  Какие равенства верны? Указать все варианты. А) ; Б) ; В) ; Г) ; Д) . В,Д
  Площадь параллелограмма, построенного на векторах и , как на сторонах, равна А) ; Б) ; В) ; Г) ; Д) . Б
  Какие величины являются векторами? Указать все варианты. А) ; Б) ; В) . А
  Если ненулевые векторы и параллельны друг другу, то (указать все верные утверждения): А) =0; Б) =0; В) ; Г) . А,В
  Если три вектора компланарны, то (указать все варианты) А) ; Б) ; В) ; Г) ; Д) . В,Г
  Если вектор ортогонален вектору , то (указать все верные утверждения): А) =0; Б) ; В) ; Г) =0. А,Б
 

3. Аналитическая геометрия
Условия задач Ответы
  Составить уравнение плоскости проходящей через точки .
  Нормаль к плоскости, проходящей через точки A (1;1;4), B (1;4;1), C (−1;1;5), может иметь вид (1; 2; 2)
  Составить уравнение плоскости, проходящей через точку параллельно плоскости .
  Составить уравнение плоскости, проходящей через точку перпендикулярно прямой .
  Если острый угол между плоскостями 3 x - 2 y + z - 5 = 0 и 2 x - y + 3 z +7 = 0, то
  Если плоскость 5 x + By + z - 1 = 0 параллельна плоскости 3 x - y + Cz +4 = 0, то В+С=
  Найти расстояние от точки М (5;-1;3) до плоскости 2 x−y+ 2 z +1=0.  
  Составить уравнение плоскости, проходящей через точку перпендикулярно плоскостям и .
  Составить уравнение плоскости, проходящей через точки и параллельно вектору .
  Уравнение прямой, проходящей через точки и , может иметь вид
  Составить уравнение прямой, проходящей через точку параллельно прямой .
  Составить уравнение прямой, проходящей через точку перпендикулярно плоскости .
  Если прямая параллельна прямой , то  
  Определить, при каком перпендикулярны прямые: и .  
  Если острый угол между прямой и плоскостью , то
  Определить, при каком С прямая параллельна плоскости . – 2
  Направляющий вектор прямой пересечения двух плоскостей может иметь координаты (1;-3;2)
  Найти точку пересечения прямой и плоскости . (0;8;-4)
  Найти все пары векторов, образующих базис: А) ; Б) ; В) ; Г) . А,Б, Г
  Определить , при котором векторы и не образуют базис. – 0,8
  Разложить вектор по базису .
  Найти максимальное из собственных значений матрицы .  
  Составить уравнение эллипса, фокусы которого лежат на оси абсцисс симметрично относительно начала координат, если если малая полуось b = 4, а c = 2.
  Найти эксцентриситет эллипса .
  Центр эллипса находится в точке (2; - 1)
  Найти радиус окружности .
  Составить уравнение гиперболы, фокусы которой расположены на оси абсцисс симметрично относительно начала координат, если действительная полуось .
  Уравнения асимптот гиперболы имеют вид
  Центр гиперболы находится в точке (3; -1)
  Составить уравнение параболы, если даны ее фокус и директриса .
  Вершина параболы находится в точке (–1; 2)
  Определить вид и расположение кривой . Гипербола с центром в точке (4; –1)
  Указать все верные утверждения: А) - уравнение цилиндра; Б) - уравнение конуса; В) - уравнение однополостного гиперболоида; Г) - уравнение гиперболического параболоида. Г
  Указать все верные утверждения: если - оператор, сопряженный к , а - к , то А) ; Б) ; В) ; Г) . А,Б
  В результате приведения к каноническому виду получена некоторая кривая. Выберите все верные утверждения: если кривая А) гипербола, то ; Б) эллипс, то ; В) парабола, то . (Здесь и - собственные значения матрицы квадратичной формы.) Б,В
  Выбрать все верные утверждения: А) Если векторы линейно независимы, то они образуют базис. Б) Если векторы образуют базис, то они линейно независимы. В) Для того, чтобы векторы образовывали базис, необходимо и достаточно, чтобы они были линейно независимыми. Г) Если векторы линейно зависимы, они не образуют базис. Б,Г
  Пусть заданы m векторов n – мерного пространства. Указать все правильные утверждения: А) Если m > n, то векторы не образуют базис. Б) Если m < n, то векторы образуют базис. В) Если m > n, то векторы линейно зависимы. Г) Если m = n, то векторы образуют базис. А,В
 

 

4. Пределы
Условия задач Ответы
 
 
   
 
 
 
 
 
   
 
 
  Утверждение означает, что А) ; Б) ; В) ; Г) ; Д) . Д
  Выбрать правильные утверждения: А) Произведение бесконечно малой на ограниченную величину есть бесконечно малая. Б) Произведение бесконечно большой на ограниченную величину есть величина ограниченная. В) Произведение конечного числа бесконечно малых величин есть бесконечно малая. Г) Сумма бесконечно малых величин есть бесконечно малая. А,В
 

 

5. Производные
Условия задач Ответы
  Найти , если .
  Найти , если
  Для функции найти .
  Для функции найти .
  Для функции найти в точке М (1;1). 9 и 2,5
  Найти , если .
  Найти , если .
  Дана функция , где . Найти
  Дана функция , где Найти  
  Найти невертикальные асимптоты кривой .
  Исследовать на непрерывность функцию в точках x =2 и x =5. х = 2 скачок х = 5 точка непрер.
  Исследовать на непрерывность функцию в точках и . x = 5-разрыв II рода х = 6-точка непрер.
  Найти интервал(ы) убывания функции . (0;1)
  Найти интервал(ы) выпуклости функции .
  Найти экстремум функции z = xy+ 3 x, если x+ y −5 = 0. zmax(4;1)=16
  Исследовать на экстремум функцию z = 2 x 3-3 y 2+6 xy в точках A (0;0) и B (−1;−1). А – нет экстремума В – точка максимума
  Найти производную функции z = x 2 y в точке М (2;3) в направлении вектора .
  Найти наибольшую скорость возрастания функции z = x 3 y +2 y ² в точке M (1;1).
  Если кривая выпукла и возрастает на отрезке , то для А) , ; Б) , ; В) , ; Г) , ; Д) , . Б
 

 

Тест N 1

 







Дата добавления: 2015-08-17; просмотров: 1811. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия