Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

НАИБОЛЕЕ СЛОЖНЫХ ЗАДАНИЙ





 

 

4.1. Пример выполнения задания 2.4

 

 

Пусть требуется найти определитель:

 

 

Поступим следующим образом: Сначала уменьшим элементы

матрицы, используя то свойство определителя, которое утверж-

дает, что он не меняется при вычитании из одной строки (или

столбца) другой строки (или столбца), умноженной на некото-

рое число. Для этого вычтем из второго столбца первый и из

третьего тоже первый. Получим

. К 3-му столбцу прибавим 2-й: .

 

Так как в 3-м столбце стоят 2 нуля, то вычисления упрощаются,

если разложить определитель по 3-му столбцу.

 

Получаем: . Проверить вычисления можно путем вычисления D на ЭВМ (см.раздел 3).

 

4.2. Пример выполнения задания 2.11

 

 

Пусть требуется решить матричное уравнение

 

.

 

Перенесём матрицу в правую часть и вычтем из матрицы

 

. Получим . Умножим

 

полученное равенство слева на и справа на .

 

Получим . Далее, находим обрат-

 

ные матрицы ; .

 

Подставим в выражение для Х:

 

 

. Проверим подстанов-

 

кой матрицы Х в исходное уравнение

 

. Вычисляем

 

4.3. Пример выполнения задания 2.12

 

 

Пусть требуется решить уравнение .

Обозначим элементы неизвестной матрицы и выполним

действия. В левой части равенства получим

 

. А в правой -

 

. Приравнивая

 

соответствующие элементы матриц в левой и правой частях, полу-чим систему уравнений

 

Переносим неизвестные в левую часть и приводим подобные члены:

 

.

Для решения системы можно обратиться к ЭВМ (см. раздел 3) или решить вручную. Выражаем d через a из 2-го уравнения и b через c из 4-го уравнения d = 1+2×a, b = - 9 - 4×c, и подставляем в 1-е и 3-е уравнения

 

 

Сокращаем 1-е уравнение на 2 и приводим подобные члены

 

 

Прибавляя ко 2-му уравнению 1-е, умноженное на 3, получаем

 

. Получили искомую матрицу

 

.

 

Проверяем ответ подстановкой в матричное уравнение

 

.

 

Выполняя действия, получаем и в левой и в правой части одну

и ту же матрицу

.

 

 

4.4. Пример выполнения задания 2.13

 

 

Пусть нам дана система

 

. Так как система однородная, то для

 

того, чтобы она имела ненулевые решения, необходимо, чтобы её

 

определитель был равен нулю.

 

Найдём такие значения р, при которых функция D(р) обращается в нуль. Найдём выражение для D(р), раскрывая определитель по пер-вой строке (на этом этапе можно обратиться к ЭВМ, см. раздел 3.3)

 

 

 

= .

 

Получаем квадратное уравнение: .

 

(Для его решения можно обратиться к ЭВМ). Находим его корни

 

. Далее находим для каждого р соответствующие ре-

шения системы (это можно также проделать на ЭВМ).

1. . Получается система

 

.

 

Ищем общее решение этой системы (она должна быть неопределённой) методом Гаусса. При этом столбец свободных членов всегда будет нулевым и его можно не писать.

Приводим матрицу системы к стандартному ступенчатому виду

 

.

Записываем систему, соответствующую последней матрице

 

 

Получилось, что x, y – главные неизвестные; z – свободная неизвестная. Возьмём z = 1, тогда . Нашли решение

, однако оно пока не удовлетворяет условию .

Но так как наша система – однородная, то при умножении реше-ния на какое-либо число получается тоже одно из решений этой систе-мы. Тогда умножим полученное решение на такое число k, чтобы условие было выполнено. Можно проверить подста-новкой, что можно взять . Для р = 2 получаем требуемое решение:

 

.

2. . Получается система

.

 

Ясно, что как и в случае р = 2, третье уравнение будет следствием первых двух и его можно отбросить. Система получается неопределённая и можно взять х = 1. Найдём у и z

 

 

(Для решения можно обратиться к ЭВМ). Вычтем из 2-го уравнения 1-е, умноженное на 3

 

.

 

Находим второе решение так же, как для р = 2

 

.

 







Дата добавления: 2015-08-17; просмотров: 428. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия