В четырех системах счисления
Из Таблицы 2 видно, что в двоичной системе запись чисел второй восьмерки (от 8 до 15) отличается от записи первой восьмерки (от 0 до 7) наличием единицы в четвертом (справа) разряде. На этом основан алгоритм перевода двоичных чисел в восьмеричные «по триадам». Для применения этого алгоритма надо разбить двоичное число на тройки цифр (считая справа) и записать вместо каждой из троек восьмеричную цифру: 101011012 → 10 101 101 → 2558. 2 5 5 Крайняя левая тройка может быть неполной (как в примере), для получения полных троек можно приписать слева недостающие нули. Убедимся в правильности алгоритма: 101011012 → 1*27+1*25+1*23+2*21+1*20=17310; 2558 →2*26+5*23+5*20=17310. Для перевода чисел из восьмеричной системы в двоичную используется обратный алгоритм: восьмеричные цифры заменяются на тройки двоичных цифр (при необходимости слева дописываются недостающие нули): 3258 → 3 2 5 → 11 010 101 → 110101012. 011 010 101 Для перевода чисел из двоичной системы в шестнадцатеричную используется алгоритм «по тетрадам». Строка двоичных цифр разбивается на четверки и вместо них записываются шестнадцатеричные цифры: 101011012 → 1010 1101 → AD16. А D Аналогично работает и обратный алгоритм: вместо шестнадцатеричных цифр подставляются четверки двоичных цифр. Из восьмеричной системы в шестнадцатеричную и обратно проще переводить через двоичную систему: D516→ D 5 →1101 0101 → 110101012 → 11 010 101 → 3258. D 5 3 2 5 При выполнении заданий на сложение чисел разных систем счисления их нужно перевести в одну систему счисления. Лучше всего пользоваться той системой, в которой должен быть представлен результат. Задание 14. (Задание А6 демоверсии 2004 г.) Вычислите значение суммы в десятичной системе счисления: 102+108+1016 =?10
|