Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Контент-анализ и его использование в сфере сервиса.





ВСТУП 3

Лабораторна робота №1. Вплив температури на стріли прогину і натягу проводів контактних підвісок 4

Лабораторна робота №2. Дослідження впливу температури на натяг проводів ланцюгових напівкомпенсованих контактних підвісок 8

Лабораторна робота №3. Вплив натягу проводів і їхнього взаємного розташування на вітрові відхилення контактного проводу при різних типах контактних підвісок 15

Лабораторна робота №4. Дослідження роботи гнучкої поперечини 17

Лабораторна робота №5. Взаємодія простої контактної підвіски і струмоприймача 21

Лабораторна робота №6. Вивчення типових вузлів контактної мережі 24

Лабораторна робота №7. Статична взаємодія струмоприймача і ланцюгової ресорної контактної підвіски 25

 

Контент-анализ и его использование в сфере сервиса.

 

Определение контент-анализа

 

Определений контент-анализа существует много, но среди них трудно найти удовлетворительное. Например, можно встретить следующие формулировки:

  1. статистическая семантика;
  2. техника для объективного количественного анализа содержания коммуникации;
  3. техника для делания выводов при помощи объективного и систематического установления характеристик сообщений.

Каждая из приведенных выше формулировок неудовлетворительна уже по той причине, что основной акцент в них делается на количественные параметры анализа текстов и в них совершенно не отражена специфика качественных методов контент-анализа.

 

Слишком широким является определение контент-анализа как "исследовательского метода, используемого для определения присутствия определенных слов или понятий в тексте или массивах текстов".

 

Под текстами в контент-анализе понимают книги, книжные главы, эссе, интервью, дискуссии, заголовки газетных статей и сами статьи, исторические документы, дневниковые записи, речи выступлений, рекламные тексты и т.д.

 

Качественный и количественный контент-анализ

 

Количественный контент-анализ в первую очередь интересуется частотой появления в тексте определенных характеристик (переменных) содержания.

Качественный контент-анализ позволяет делать выводы даже на основе единственного присутствия или отсутствия определенной характеристики содержания текста. Тут всегда ответ ДА или НЕТ. Например: присутствует ли в тексте слово МУЗЫКА?

 

Различие двух подходов довольно легко проиллюстрировать примерами.

 

В 50-е годы западные аналитики на основе количественного анализа статей газеты "Правда" обнаружили резкое снижение числа ссылок на Сталина. Отсюда они сделали закономерный вывод, что последователи Сталина стремятся дистанцироваться от него.

 

С другой стороны, качественный аналитик мог бы сделать аналогичный вывод на основе единственного факта, что в публичной речи одного из партийных функционеров, посвященной победе СССР в Великой Отечественной войне, Сталин вообще не был упомянут. Прежде такое было бы немыслимо.

 

Очевидно, что количественный контент-анализ легче поддается реализации в компьютерных программах. Именно по этой причине в дальнейшем мы будем вести речь исключительно о методах количественного контент-анализа.

 

Следует обратить внимание на то, что когда говорят о контент-анализе текстов, то главный интерес всегда заключается не в самих характеристиках содержания, а во внеязыковой реальности, которая за ними стоит - личных характеристиках автора текста, преследуемых им целях, характеристиках адресата текста, различных событиях общественной жизни и пр.

 

Простые или абсолютные частоты слов (вычисление количества раз, которое некоторое слово встречается во всем тексте)

 

Первым можно назвать этап в развитии контент-анализа, когда внимание исследователей было направлено в основном просто на подсчет частот появления в текстах различных слов или тем. Г.Г. Почепцов условно относит появление контент-анализа к 18 веку, "когда в Швеции частота появления тем, связанных с Христом, использовалась для принятия решения о еретичности книги."

 

Относительные частоты слов (количество раз, которое некоторое слово встречается во всем тексте делить на количество всех слов в тексте)

 

Однако, просто частота появления того или иного слова или темы мало что говорят. Гораздо более информативны не абсолютные, а относительные частоты, которые вычисляются как отношение абсолютной частоты к длине анализируемого текста. В зависимости от того, что является переменной содержания, под длиной текста может пониматься количество слов в нем, количество предложений, абзацев и пр.

 

В качестве реального примера такого анализа текстов можно привести анализ президентских посланий стране, с которыми обратился Б.Клинтон в 1994 и 1995 годах. Эти послания содержат от 7000 до 10000 слов. Были сформированы категории слов, относящихся к экономике, бюджету страны, образованию, преступности, вопросам семьи, международным делам, социальной помощи и др. По изменению относительных частот в посланиях 1994 и 1995 годов были сделаны выводы об изменении политики государства в различных областях. Т.е. все эти темы нашли отражение в обоих посланиях, но в одном из них некоторым темам уделялось больше внимания, а в другом меньше. Например, в послании 1995 года больше внимания было уделено вопросам образования, семьи, но меньше внимания - преступности, международным делам, социальной помощи. Это дало основания для того, чтобы судить о приоритетах правительства США.

 

Категории

 

В приведенном выше примере было упомянуто понятие категории. В качестве категории может выступать набор слов, объединенных по определенному основанию. Можно сказать, что посредством категорий в контент-анализе представлены определенные концептуальные образования. Так в случае с посланиями Б.Клинтона была образована категория ЭКОНОМИКА, в которую входили слова - экономика, безработица, инфляция. В категорию СЕМЬЯ входили слова - ребенок, семья, родители, мать, отец. Именно учет частот встречаемости категорий, а не отдельных слов, позволяет судить о внимании, уделенном в послании тем или иным вопросам. Затем обычно вычисляются относительные частоты этих категорий в данном тексте.

 

Очевидно, что от качества составления таких категорий во многом зависит качество результатов анализа. Контент-анализ текстов с использованием категорий иногда называют концептуальным анализом. Сфера его применения довольно широка. Два основных типа задач, решаемых с его помощью:

Есть два или более текстов, которые необходимо сравнить в отношении нагрузки на определенные категории. Например, задача выяснить, какое внимание уделяют две разные газеты определенным темам. Если эти газеты рассчитаны на одну аудиторию, то существенное различие в частотах позволит судить о различиях в политике, проводимой людьми, стоящими за ними.

Задача отслеживания динамики изменения нагрузки на определенные категории. Например, выяснить частоту упоминания темы внешнего долга России в фиксированном наборе центральных газет на протяжении какого-то времени и соотнести ее с колебаниями курса доллара путем простого корреляционного анализа.

Из истории разведки известно, как по изменению в специальной литературе частоты упоминания определенных научных тем и фамилий ученых делались достоверные выводы об успехах, достигнутых в конкретных областях исследований.

 

Нормы (Норма - это относительная частота употребления некоторой категории среднестатистическим человеком. Норма вычисляется на основе анализа огромного количества различных текстов, принадлежащих разным авторам.)

 

Относительные частоты позволяют сравнивать два и более текстов, но иногда требуется сделать вывод на основе анализа лишь одного текста.

 

Например, имеется текст выступления депутата Думы и требуется оценить, насколько оно агрессивно. Прежде всего для решения этой задачи должна быть составлена категория агрессивно окрашенной лексики. После этого мы можем сравнить текст выступления нашего депутата с выступлениями других и сказать, кто из них агрессивнее. Но от нас требуется не это, от нас требуется оценить степень агрессивности выступления. Очевидно, что для ответа на этот вопрос нам потребуется некоторая норма, своеобразная нулевая отметка агрессивности. Мы получим ее, если выясним относительную частоту употребления агрессивно окрашенных слов средним носителем русского языка. Помощь в этом могут оказать частотные словари. Сравнивая относительную частоту употребления агрессивно окрашенной лексики в выступлении депутата с частотой ее употребления средним носителем русского языка мы как раз и можем сделать вывод о степени агрессивности.

 

Представим, что мы хотим оценить степень агрессивности выступления не депутата, а профессионального военного. Очевидно, что норма для него будет отличаться от нормы для среднего человека. Поэтому для оценки уровня агрессивности профессионального военного требуются другие нормы, которые могут быть получены путем дополнительной статистической обработки представительной выборки текстов, характерных для военной среды.

 

Связи категорий

 

Дальнейшее развитие контент-анализа требовало более тонких методов анализа текстов. К середине 50-х годов исследователи стали все больше уделять внимания не простому наличию или отсутствию категорий в тексте, а связям между категориями. Для этого обращают внимание на совместную встречаемость слов различных категорий в предложении. Поскольку смысл несет именно предложение, а не отдельное слово. Например, для каждого предложения текста мы можем выяснить, слова каких категорий в нем встречаются. Может оказаться, что для некоторых категорий наблюдается тенденция их совместного употребления, а для других - наоборот.

 

В качестве гипотетического примера можно привести газетную статью, в которой наблюдается совместное употребление категорий ПРАВИТЕЛЬСТВО и НЕГАТИВ.

 

Интересно то, что в некоторых случаях это может быть отражением сознательной позиции автора статьи, а в некоторых - связью на уровне подсознания.

 

Понятно, что изучение связей между категориями значительно расширяет круг задач, которые может решать контент-анализ.

 

Collocations (коллокейшенз) - контекст некоторого слова, т.е. множество слов, которые чаще всего употребляются вместе с этим словом.

 

Представим, что мы взяли статью натуралиста о змеях и решили ее проанализировать. Для этого мы отметили в тексте все предложения, в которые входит некоторое слово, и составили статистику частот всех слов из этих предложений. Можно предположить, что наиболее частотными в этих предложениях окажутся слова: яд, ядовитый, укус, ползать, длинный... т.е. те слова, которыми наиболее часто характеризуются змеи. Таким образом, наш формальный метод анализа текстов позволил выделить существенные признаки, характеризующие змей. В англоязычной литературе такие контексты употребления слов как раз и называют collocations (коллокейшенз).

 

Ценность описанного метода анализа текстов очевидна, так как позволяет на основе формальных методов извлекать из массивов текстов содержательную информацию.

 

Контекстный анализ (это контент-анализ не всех, а некоторого множества предложений, каким-то образом выбранных)

 

Метод нахождения контекстов употребления слов (collocations) допускает дальнейшее развитие. Выбрав предложения, в которых встречается конкретное слово или категория, мы получили некоторую подвыборку текста, к которой в свою очередь применимы все методы контент-анализа. Т.е. контексты употребления слов и категорий в свою очередь могут быть подвергнуты контент-анализу - выяснению простых частот категорий, относительных частот, оценок категорий относительно нормы и т.д.

 

Если выразиться образно, то контекстный анализ позволяет выделить в тексте несколько тематических нитей и анализировать их отдельно.

 

Очевиден огромный потенциал контекстного анализа при мониторинге больших объемов информации, так как он позволяет полностью автоматизировать весь процесс сбора информации.

 

Автоматическая категоризация

 

Использование при контент-анализе определенного набора категорий задает так называемую концептуальную сетку, в терминах которой и анализируется текст. От того, насколько удачен набор используемых категорий, зависит качество результатов анализа. Поэтому исследователей давно интересовала задача автоматической категоризации слов текста, т.е. выделение обсуждаемых в нем тем.

Были предложены ряд подходов для решения этой задачи. Следует отметить, что автоматическая категоризация возможна лишь в том случае, если объем анализируемых текстов достаточно велико.

 








Дата добавления: 2015-08-27; просмотров: 483. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия