Модель войны или сражения
При определении эффективности инвестиционных проектов часто возникает задача определения нормы дисконта для шагов различной длительности (полугодие, квартал, месяц), при известной норме дисконта для шага длительностью в один год. Эта задача возникает, в частности, при оценке инвестиционного проекта с непостоянным шагом. Формула пересчета для случая непостоянной нормы дисконта Е определяется следующим образом. Пусть известна норма дисконта Е(D1) при длительности шага D1 (например, год), и требуется найти норму дисконта Е(D) при размере шага D (например, квартал), выраженного в тех же единицах, что и D1, при условии, что обе эти нормы должны соответствовать одинаковой эффективности капитала. Тогда Е(D) определяется как решение уравнения (6) где D1 и D разумно вычислять в кварталах. Тогда D1 = 4 (кварталам), D = 1 и Владимир Игоревич Арнольд "Жесткие" и "мягкие" математические модели
Эта брошюра, изданная к Всероссийской конференции "Математики и общество. Математическое образование на рубеже веков" (Дубна, 18--22 сентября 2000 года), представляет собой текст доклада, прочитанного академиком В.И. Арнольдом в 1997 году на семинаре при Президентском совете РФ. В докладе рассказано о применениях теории дифференциальных уравнений в таких науках, как экология, экономика и социология. Оглавление 1. Модель войны или сражения 2. Оптимизация как путь к катастрофе 3. Жесткие модели как путь к ошибочным предсказаниям 4. Опасность многоступенчатого управления 5. Математические модели перестройки 6. Статистика первых цифр степеней двойки и передел мира 7. Математика и математическое образование в современном мире Список литературы
Примером жесткой модели является таблица умножения. Простейший пример мягкой модели -- принцип "чем дальше в лес, тем больше дров". Возможность полезной математической теории мягких моделей открыта относительно недавно. В докладе на простейших примерах будет показано, как эта теория может применяться в экономических, экологических и социологических моделях. Модель войны или сражения В простейшей модели борьбы двух противников (скажем, двух армий) -- модели Ланкастера -- состояние системы описывается точкой (x,y) положительного квадранта плоскости. Координаты этой точки, x и y -- это численности противостоящих армий. Модель имеет вид
Это -- жесткая модель, которая допускает точное решение
Эволюция численностей армий x и y происходит вдоль гиперболы, заданной этим уравнением (рис. 1). По какой именно гиперболе пойдет война, зависит от начальной точки.
Эти гиперболы разделены прямой . Если начальная точка лежит выше этой прямой (случай 1 на рис. 1), то гипербола выходит на ось y. Это значит, что в ходе войны численность армии x уменьшается до нуля (за конечное время). Армия y выигрывает, противник уничтожен. Если начальная точка лежит ниже (случай 2), то выигрывает армия x. В разделяющем эти случаи состоянии (на прямой) война заканчивается ко всеобщему удовлетворению истреблением обеих армий. Но на это требуется бесконечно большое время: конфликт продолжает тлеть, когда оба противника уже обессилены. Вывод модели таков: для борьбы с вдвое более многочисленным противником нужно в четыре раза более мощное оружие, с втрое более многочисленным -- в девять раз и т. д. (на это указывают квадратные корни в уравнении прямой). Ясно, однако, что наша людоедская модель сильно идеализирована и было бы опасно прямо применять ее к реальной ситуации. Возникает вопрос -- как изменится вывод, если модель будет несколько иной. Например, коэффициенты a и b могут быть не строго постоянными, а могут, скажем, зависеть от x и от y. И точный вид этой зависимости нам может быть неизвестен. В этом случае речь идет о системе
Однако в математике разработаны методы, позволяющие сделать выводы общего характера, и не зная точно явного вида функций a и b. В этой ситуации принято говорить о мягкой модели -- модели, поддающейся изменениям (за счет выбора функций a и b в нашем примере). Общий вывод в данном случае есть утверждение о структурной устойчивости исходной модели: изменение функций a и b изменит описывающие ход военных действий кривые на плоскости (x, y) (которые уже не будут гиперболами и разделяющей их прямой), но это изменение не затрагивает основного качественного вывода. Вывод этот состоял в том, что положения " x выигрывает" и " y выигрывает" разделены нейтральной линией "обе армии уничтожают друг друга за бесконечное время". Математики говорят, что топологический тип системы на плоскости (x,y) не меняется при изменении функций a и b: оно приводит лишь к искривлению нейтральной линии (рис. 2).
Этот математический вывод не самоочевиден. Можно представить себе и другую ситуацию, например, изображенную на рис. 3. Математическая теория структурной устойчивости утверждает, что эта ситуация не реализуется, во всяком случае для не слишком патологических функций a и b (скажем, она не реализуется, если это -- положительные в нуле многочлены).
Мы можем сделать вывод о качественной применимости простейшей модели войны для приближенного описания событий в целом классе моделей, причем для этого даже не нужно знать точного вида жесткой модели: выводы справедливы для мягкой модели. На самом деле простейшая модель дает даже полезное количественное предсказание: наклон разделяющей нейтральной прямой в нуле определяется формулой , где a и b -- значения коэффициентов в нуле. То есть принцип "если противников вдвое больше, то надо иметь в четыре раза более мощное оружие" справедлив на конечном этапе взаимного истребления, в то время как на начальном этапе войны число 4 нужно, быть может, откорректировать (учитывая вид коэффициентов a и b). Для этой корректировки в математике мягких моделей тоже разработаны эффективные методы (несмотря на то, что явная формула для решения уравнений модели не только неизвестна, но и -- это строго доказано -- не существует вовсе). Можно думать, что описанная модель отчасти объясняет как неудачи Наполеона и Гитлера, так и успех Батыя и надежды мусульманских фундаменталистов.
|