Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение 27.1.





Лекция 27

 

Плоскость, проходящая через точку поверхности, называется касательной плоскостью к поверхности в этой точке, если угол между секущей, проходящей через точку и любой точкой этой плоскости стремится к нулю, когда .

 

Если дифференцируема в точке , то

 

(27.1)

– уравнение касательной плоскости к поверхности в точке .

 

В этом случае – нормальный вектор касательной плоскости называют нормалью к поверхности и точке , где .

 

Геометрический смысл.

 

угловой коэффициент касательной в точке к сечению поверхности плоскостью .

Частный дифференциал приращение аппликаты касательной плоскости.

 

Производная по направлению. Градиент.

 

Пусть функция определена в окрестности точки . Из точки построим - произвольный единичный вектор (орт). Для характеристики скорости изменения функции в точке в направлении введем понятие производной по направлению.

 

Через вектор проведем прямую .

Выберем точку в направлении вектора . Тогда .

В этом случае:

.

 

Определение 27.2.

Если существует предел , то он называется производной по направлению функции в точке по направлению и обозначается :

(27.2)

 

Пусть функция дифференцируема, тогда

.

Здесь ,

Разделив обе части равенства на , и учитывая, что

,

перейдем к пределу при :

(27.3)

 







Дата добавления: 2015-08-27; просмотров: 425. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия