Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Часть I. Элементы теории





7. Системы линейных равенств и неравенств. Теоремы об альтернативах. Лемма Фаркаша. Линейные матричные неравенства.

8. Выпуклые, строго выпуклые и сильно выпуклые функции. Определения, примеры, свойства. Множество уровня выпуклой и сильно выпуклой функции. Эпиграф функции, свойства эпиграфа выпуклой функции.

9. Непрерывность и дифференцируемость по направлению выпуклой функции. Дифференциальные критерии выпуклой (сильно выпуклой) функции.

10. Субдифференциал функции. Существование и свойства субдифференциала. Теорема о субдифференциале суммы выпуклых функций.

11. Индикаторная функция множества. Субдифференциал индикаторной функции выпуклого множества. Субдифференциал выпуклой функции на выпуклом множестве. Опорная функция множества.

12. Сопряженные и полярные функции, их свойства. Неравенства Юнга–Фенхеля и Минковского–Малера. Примеры сопряженных и полярных функций.

13. Теорема Вейерштрасса и её следствия. Выпуклая задача минимизации. Теорема о глобальном экстремуме. Условия оптимальности выпуклых задач минимизации в терминах субдифференциалов.

14. Касательное направление, касательный конус. Конус возможных направлений. Их свойства. Теорема о необходимом условии экстремума в терминах производных по касательному направлению. Необходимое и достаточное условие экстремума для выпуклой задачи в терминах производных по направлению.

15. Необходимое и достаточное условия экстремума дифференцируемой функции на выпуклом множестве. Вариационное неравенство. Необходимые и достаточные условия экстремума для задачи безусловной минимизации (БМ).

16. Необходимые и достаточные условия оптимальности для задач математического программирования. Условия Каруша–Куна–Таккера. Достаточные условия второго порядка. Условия регулярности ограничений. Необходимые и достаточные условия оптимальности для выпуклой задачи математического программирования. Регулярная и нерегулярная задачи математического программирования.

17. Функция Лагранжа для задач математического программирования и ее свойства. Седловая точка функции Лагранжа.

18. Теория двойственности для задач математического программирования. Задача линейного программирования и двойственная к ней. Собственные и несобственные задачи математического программирования. Двойственность для несобственных задач линейного программирования.







Дата добавления: 2015-08-27; просмотров: 780. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия