Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сбег ствола. Уменьшение диаметра от основания к вершине называется сбегом.





Уменьшение диаметра от основания к вершине называется сбегом.

Под абсолютным (действительным) сбегом понимают диаметры на определённых высотах (например, через 2м). Действительный сбег даёт возможность определить диаметр на любой высоте дерева, например:

d9 = 16,3см; d11 = 14,4см; определить d10, 35, тогда:

 

d10, 35 = d9 – (d9 – d11): 2 ∙ l = 16,3 – (16,3 – 14,4): 2 ∙ 1,35 ≈ 15см, где: l – расстояние от нижнего сечения до искомого (в нашем примере – 1,35).

Абсолютный сбег является основным таксационным показателем ствола. Зная его, можно найти объём ствола.

Средний сбег – уменьшение диаметра в расчёте на 1м длины ствола. Обычно средний сбег вычисляют для коротких отрезков ствола, путём деления разницы нижнего и верхнего диаметров на длину отрезка: Sср. = (dн – dв): l

7. Определение объёма ствола по простой формуле срединного сечения

Ствол имеет сложную форму и не является каким-либо геометрическим телом. Можно приближённо считать, что в нижней своей части он приближается к усечённому нейлоиду, в средней части – к цилиндру, выше половины ствола – к усечённому параболоиду, а в самой верхней части – к конусу.

 

Условно допускают, что ствол имеет форму параболоида, тогда его объём можно вычислить по формуле: V = q0 ∙ h: 2, но нижнее сечение имеет корневые наплывы, поэтому его брать нельзя. Известно, что площадь сечения параболоида пропорциональна высоте. Следовательно, площадь сечения на половине высоты параболоида будет равна половине площади основания

qо = 2Y,тогда V = qо · h: 2 = 2Y ∙ h: 2 = Y·h,или окончательно:

V = Y · h

где: Y (гамма) – площадь сечения на половине высоты ствола.

Это и есть простая формула срединного сечения.

При использовании простой формулы срединного сечения объёмы целых стволов обычно вычисляют с систематической ошибкой минус 25% и более (корневые наплывы), поэтому применять её можно только для определения объёмов коротких отрезков ствола.

8. Определение объёма ствола по сложной формуле срединных сечений

Если разбить ствол на отдельные секции (обычно по 2м) и для каждой секции вычислить объём по простой формуле срединных сечений, а затем суммировать объёмы, то получим общий объём ствола с гораздо большей точностью (±2 -3%).


Предположим, что ствол длиной «L» разбит на «n» равных секций длиной «l» и на середине

каждой из них найдена площадь сечения «Y» (гамма).

Тогда объём первой секции будет равен V1 = Y1 · I

второй секции V2 = Y2 ∙ I

третьей V3 = Y3 ∙ I

и т.д. вплоть до «n»-ой секции Vn = Yn ∙ I

Общий объём ствола будет равен V = Y1 ∙ I + Y2 · I + Y3 ∙ I +... + Yn · I

«I» можно вынести за скобку, тогда V = I · (Y1 + Y2 + Y3 +... + Yn).

Если длина секций не кратна общей длине ствола, то остаётся вершинка, объём которой определяется по формуле объёма конуса V = g0 ∙h/3, тогда формула примет вид:

 

V = I · (Y1 + Y2 + Y3 +... + Yn) + gо ∙ h/3

- это и есть сложная формула серединных сечений.

 

Пример расчёта объёма ствола по этой формуле

№ № секции Высота сечения от комля, м Диаметр на середине секции, см Площадь сечения, кв.м Объём секции и вершинки, куб.м
I   20,3 0,0324 0,0648
II   18,0 0,0254 0,0508
III   15,1 0,0179 0,0358
IV   14,0 0,0154 0,0308
V   12,4 0,0121 0,0242
VI   9,6 0,0072 0,0144
VII   8,6 0,0058 0,0116
VIII   7,5 0,0044 0,0088
IX   5,0 0,0020 0,0040
вершинка   3,0 0,0007 0,0003
Итого h = 19,4м d1,3 = 20,0см   0,2441

 







Дата добавления: 2015-08-27; просмотров: 1673. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия