Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегрирование по частям





Интегрирование по частям обычно используется, если подынтегральная функция представляет произведение функций разных типов - степенная и показательная, степенная и тригонометрическая, обратная тригонометрическая функция и степенная, показательная и тригонометрическая и т.д. Интегрирование в этом случае производится с помощью формулы

,

где функции одной переменной. При применении процедуры интегрирования по частям важен выбор функции .

Укажем приоритеты выбора этой функции.

1. В первую очередь в качестве выбирается одна из функций , .

2. При отсутствии этих функций в подынтегральном выражении в качестве может быть выбрана находящаяся в числителе степенная функция с целым положительным показателем степени.

Других приоритетов при выборе этой функции нет, задание в этом случае осуществляется перебором возможных вариантов.

Примеры.

1.

.

Билет

Практические вопросы

1. Производная

2. Предел

3. Производная по направлению

4.Производные функции одной или нескольких переменных

5. Неопределенный или определенный интеграл

6. Математическое ожидание или дисперсия дискретно заданной случайной величины

 

Теоретические вопросы

Методы Крамера или Гаусса.

Линии на плоскости. Прямая на плоскости и в пространстве, ее уравнения, кривые второго порядка.

Базис в 3-х мерном пространстве, представление вектора в базисе.

Пределы, их свойства.

Экстремумы функции одной переменной или наибольшее и наименьшее значения функции на отрезке

Асимптоты кривой или правило Лопиталя.

Формула Ньютона-Лейбница

Интегрирование НИ и ОИ по частям и заменой переменной.

Интегрирование простейших дробно рациональных функций.

Интегралы .

 

Представление правильной дробно рациональной функции в виде

суммы простейших дробей.

Универсальнапя тригонометрическая подстановка.

Замена .

Основные формулы комбинаторики

Определения вероятности случайного события

Сумма или произведение случайных событий, их вероятность

Математическое ожидание, дисперсия, их свойства, среднее квадратическое отклонение.

Нормальный закон распределения, его параметры.

Генеральная и выборочная совокупности, их точечные и интервальные оценки.

Оценка генеральной совокупности по ее выборке. Смещенная и несмещенная оценки.

Доверительный интервал.

Коэффициент корреляции.

 

 







Дата добавления: 2015-08-27; просмотров: 462. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия