Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы повышения помехозащищенности и помехоустойчивости передачи информации





 

Термином «шум» называют разного помехи, искажающие передаваемый сигнал и приводящие к потере информации.

Технические причины возникновения помех:

• плохое качество линий связи;

• незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же каналам.

Наличие шума приводит к потере информации.

Шеннон разработал специальную теорию кодирования, дающую методы борьбы с шумом. Одна из важнейших идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным.

Избыточность кода это многократное повторение передаваемых данных.

Избыточность кода не может быть слишком большой. Это приведет к задержкам и удорожанию связи.

Теория кодирования как раз и позволяет получить такой код, который будет оптимальным: избыточность передаваемой информации будет минимально возможной, а достоверность принятой информации – максимальной.

Ранее отмечалось, что при передаче сообщений по каналам связи могут возникать помехи, способные привести к искажению принимаемых знаков. Так, например, если вы попытаетесь в ветреную погоду передать речевое сообщению человеку, находящемуся от вас на значительном расстоянии, то оно может быть сильно искажено такой помехой, как ветер. Вообще, передача сообщений при наличии помех является серьезной теоретической и практической задачей. Ее значимость возрастает в связи с повсеместным внедрением компьютерных телекоммуникаций, в которых помехи неизбежны. При работе с кодированной информацией, искажаемой помехами, можно выделить следующие основные проблемы: установления самого факта того, что произошло искажение информации; выяснения того, в каком конкретно месте передаваемого текста это произошло; исправления ошибки, хотя бы с некоторой степенью достоверности.

Помехи в передачи информации - вполне обычное дело во всех сферах профессиональной деятельности и в быту. Один из примеров был приведен выше, другие примеры - разговор по телефону, в трубке которого «трещит», вождение автомобиля в тумане и т.д. Чаще всего человек вполне справляется с каждой из указанных выше задач, хотя и не всегда отдает себе отчет, как он это делает (т.е. неалгоритмически, а исходя из каких-то ассоциативных связей). Известно, что естественный язык обладает большой избыточностью (в европейских языках - до 7%), чем объясняется большая помехоустойчивость сообщений, составленных из знаков алфавитов таких языков. Примером, иллюстрирующим устойчивость русского языка к помехам, может служить предложение «в словох всо глосноо зомононо боквой о». Здесь 26% символов «поражены», однако это не приводит к потере смысла. Таким образом, в данном случае избыточность является полезным свойством.

Избыточность могла бы быть использована и при передаче кодированных сообщений в технических системах. Например, каждый фрагмент текста («предложение») передается трижды, и верным считается та пара фрагментов, которая полностью совпала. Однако, большая избыточность приводит к большим временным затратам при передаче информации и требует большого объема памяти при ее хранении. Впервые теоретическое исследование эффективного кодирования предпринял К.Шеннон.

Первая теорема Шеннона декларирует возможность создания системы эффективного кодирования дискретных сообщений, у которой среднее число двоичных символов на один символ сообщения асимптотически стремится к энтропии источника сообщений (в отсутствии помех). Задача эффективного кодирования описывается триадой:

Х = {X 4 i } - кодирующее устройство - В.

Здесь X, В - соответственно входной и выходной алфавит. Под множеством хi можно понимать любые знаки (буквы, слова, предложения). В - множество, число элементов которого в случае кодирования знаков числами определяется основанием системы счисления (например, т = 2). Кодирующее устройство сопоставляет каждому сообщению хi из Х кодовую комбинацию, составленную из пi символов множества В. Ограничением данной задачи является отсутствие помех. Требуется оценить минимальную среднюю длину кодовой комбинации.

Для решения данной задачи должна быть известна вероятность Рi появления сообщения хi, которому соответствует определенное количество символов пi алфавита В. Тогда математическое ожидание количества символов из В определится следующим образом:

n cр = пiРi (средняя величина).

Этому среднему числу символов алфавита В соответствует максимальная энтропия Нтаx = n ср log т. Для обеспечения передачи информации, содержащейся в сообщениях Х кодовыми комбинациями из В, должно выполняться условие H4mах ≥ Н(х), или п log т ≥ - Рi log Рi. В этом случае закодированное сообщение имеет избыточность пH(x) / log т, n min = H(x) / log т.

Коэффициент избыточности

К u = (H maxH (x)) / H max = (n cpn min) / n cp

Выпишем эти значения в виде табл. 1.8. Имеем:

N min = H (x) / log 2 = 2,85, K u = (2,92 - 2,85) / 2,92 = 0,024,

т.е. код практически не имеет избыточности. Видно, что среднее число двоичных символов стремится к энтропии источника сообщений.

Таблица 3.1 Пример к первой теореме Шеннона

 

N Рхi xi Код ni пi-Рi Рхi ∙ log Рхi
  0,19 X1     0,38 -4,5522
  0,16 X2     0,48 -4,2301
  0.16 X3     0,48 -4,2301
  0,15 X4     0,45 -4,1054
  0,12 X5     0,36 -3,6706
  0,11 X6     0,33 - 3,5028
  0,09 X7     0,36 -3,1265
  0,02 X8     0,08 -3,1288
  Σ=1 Σ=2,92 Σ=2,85

 

Вторая теорема Шеннона гласит, что при наличии помех в канале всегда можно найти такую систему кодирования, при которой сообщения будут переданы с заданной достоверностью. При наличии ограничения пропускная способность канала должна превышать производительность источника сообщений.

Таким образом, вторая теорема Шеннона устанавливает принципы помехоустойчивого кодирования. Для дискретного канала с помехами теорема утверждает, что, если скорость создания сообщений меньше или равна пропускной способности канала, то существует код, обеспечивающий передачу со сколь угодно мглой частотой ошибок.

Доказательство теоремы основывается на следующих рассуждениях. Первоначально последовательность Х = {xi} кодируется символами из В так, что достигается максимальная пропускная способность (канал не имеет помех). Затем в последовательность из В длины п вводится r символов и по каналу передается новая последовательность из п + r символов. Число возможных последовательностей длины и + т больше числа возможных последовательностей длины п. Множество всех последовательностей длины п + r может быть разбито на п подмножеств, каждому из которых сопоставлена одна из последовательностей длины п. При наличии помехи на последовательность из п + r выводит ее из соответствующего подмножества с вероятностью сколь угодно малой.

Это позволяет определять на приемной стороне канала, какому подмножеству принадлежит искаженная помехами принятая последовательность длины п + r, и тем самым восстановить исходную последовательность длины п.

Эта теорема не дает конкретного метода построения кода, но указывает на пределы достижимого в создании помехоустойчивых кодов, стимулирует поиск новых путей решения этой проблемы.

 

Большой вклад в научную теорию связи внес советский ученый Владимир Александрович Котельников (1940-1950 г. XX века). В современных системах цифровой связи для борьбы с потерей информации при передаче:

• все сообщение разбивается на порции – блоки;

 

• для каждого блока вычисляется контрольная сумма (сумма двоичных цифр), которая передается вместе с данным блоком;

 

• в месте приема заново вычисляется контрольная сумма принятого блока, если она не совпадает с первоначальной, передача повторяется.

Таблица 3.2. Модель Клода Шеннона по передаче информации в технических системах связи

Передача информации в технических системах связи
Модель К. Шеннона
Процедура кодирования Процесс передачи информации по каналу связи Процедура декодирования
Пропускная способность канала Воздействие шумов на канал связи
Защита информации от потерь при воздействии шума
Кодирование с оптимально-избыточным кодом Частичная потеря избыточной информации при передаче Полное восстановление исходного кода
       

Дополнительная литература:

 

Тема урока Литература
  Информация как единство науки и технологии. Могилев “Информатика”
  Социальные аспекты информатики. “Социокультурные аспекты хакерства” (по материалам из Википедии-свободной электронной энциклопедии)
  Правовые аспекты информатики. “Правовые аспекты информатики”(по материалам сайта “Информатика на 5”) http://www.5byte.ru/referat/zakon.php
  Информация и физический мир. Информация и общество. «Введение в информатику» из учебника Н.Угринович «Информатика и информационные технологии» стр.12-17
  Информатизация общества. по материалам электронного журнала “Мир ПК” http://schools.keldysh.ru/sch444/MUSEUM/pres/cw-01-2000.htm
  Телекоммуникации в Башкортостане Портал «Республика Башкортостан» - раздел Телекоммуникации http://башкортостан.рф/potential/telecommunications/
  Информационная безопасность общества и личности.   «Информационная безопасность личности, общества, государства» (по материалам электронной книги В.А Копылова «Информационное право», главы 10-11) http://www.i-u.ru/biblio/archive/kopilov_iform/04.aspx  
  Тема 2.1. Различные уровни представлений об информации. Значения термина в различных областях знания. «Семантический подход к определению информации» (материалы из Википедии — свободной электронной энциклопедии, раздел «Информация в человеческом обществе») http://ru.wikipedia.org/wiki/%C8%ED%F4%EE%F0%EC%E0%F6%E8%FF

 







Дата добавления: 2015-08-27; просмотров: 1458. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия