Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

РАСЧЕТ НА УСТОЙЧИВОСТЬ





8.5. Расчет на устойчивость замкнутых круговых цилиндрических оболочек вращения, равномерно сжатых параллельно образующим, следует выполнять по формуле

σ;1γcσcr 1, (99)

где σ;1 - расчетное напряжение в оболочке;

σcr 1 - критическое напряжение, равное меньшему из значений ψ Ry или cEt / r (здесь r - радиус срединной поверхности оболочки; t - толщина оболочки).

Значения коэффициентов ψ при 0 < r / t ≤ 300 следует определять по формуле

. (100)

Значения коэффициентов с следует определять по табл. 31.

Таблица 31

r / t                  
с 0,22 0,18 0,16 0,14 0,11 0,09 0,08 0,07 0,06

В случае внецентренного сжатия параллельно образующим или чистого изгиба в диаметральной плоскости при касательных напряжениях в месте наибольшего момента, не превышающих значений 0,07 E (t / r)3/2, напряжение σcr 1 должно быть увеличено в (1,1 - 0,1 σ1/ σ;1) раз, где σ1 - наименьшее напряжение (растягивающие напряжения считать отрицательными).

8.6. В трубах, рассчитываемых как сжатые или сжато-изгибаемые стержни, при условной гибкости должно быть выполнено условие

. (101)

Такие трубы следует рассчитывать на устойчивость в соответствии с требованиями разд. 5 настоящих норм независимо от расчета на устойчивость стенок. Расчет на устойчивость стенок бесшовных или электросварных труб не требуется, если значение r / t не превышает половины значений, определяемых по формуле (101).

8.7. Цилиндрическая панель, опертая по двум образующим и двум дугам направляющей, равномерно сжатая вдоль образующих, при b 2/(rt) ≤ 20 (где b - ширина панели, измеренная по дуге направляющей) должна быть рассчитана на устойчивость как пластинка по формулам:

при расчетном напряжении σ; ≤ 0,8 Ry

; (102)

при расчетном напряжении σ; = Ry

. (103)

При 0,8 Ry < σ; < Ry наибольшее отношение b / t следует определять линейной интерполяцией.

Если b 2/(rt) > 20, панель следует рассчитывать на устойчивость как оболочку согласно требованиям п. 8.5.

8.8*. Расчет на устойчивость замкнутой круговой цилиндрической оболочки вращения при действии внешнего равномерного давления р, нормального к боковой поверхности, следует выполнять по формуле

σ;2γcσcr 2, (104)

где σ;2 = pr / t - расчетное кольцевое напряжение в оболочке;

σcr 2 - критическое напряжение, определяемое по формулам:

при 0,5 ≤ l / r ≤ 10

σcr 2 = 0,55 E (r / l) (t / r)3/2; (105)

при l / r ≥ 20

σcr 2 = 0,17 E (t / r)2; (106)

при 10 < l / r < 20 напряжение σcr 2 следует определять линейной интерполяцией.

Здесь l длина цилиндрической оболочки.

Та же оболочка, но укрепленная кольцевыми ребрами, расположенными с шагом s ≥ 0,5 r между осями, должна быть рассчитана на устойчивость по формулам (104)-(106) с подстановкой в них значения s вместо l.

В этом случае должно быть удовлетворено условие устойчивости ребра в своей плоскости как сжатого стержня согласно требованиям п. 5.3 при N = prs и расчетной длине стержня lef = 1,8 r, при этом в сечение ребра следует включать участки оболочки шириной 0,65 t с каждой стороны от оси ребра, а условная гибкость стержня не должна превышать 6,5.

При одностороннем ребре жесткости его момент инерции следует вычислять относительно оси, совпадающей с ближайшей поверхностью оболочки.

8.9. Расчет на устойчивость замкнутой круговой цилиндрической оболочки вращения, подверженной одновременному действию нагрузок, указанных в пп. 8.5 и 8.8*, следует выполнять по формуле

, (107)

где σcr 1 должно быть вычислено согласно требованиям п. 8.5, а σcr 2 - согласно требованиям п. 8.8*.

8.10. Расчет на устойчивость конической оболочки вращения с углом конусности β; ≤ 60°, сжатой силой N вдоль оси (рис. 19) следует выполнять по формуле

NγcNcr, (108)

где Ncr - критическая сила, определяемая по формуле

Ncr = 6,28 rmcr 1cos2 β;, (109)

здесь t - толщина оболочки;

σcr 1 - значение напряжения, вычисленное согласно требованиям п. 8.5 с заменой радиуса r радиусом rm, равным

. (110)

Рис. 19. Схема конической оболочки вращения под действием продольного усилия сжатия

8.11. Расчет на устойчивость конической оболочки вращения при действии внешнего равномерного давления p, нормального к боковой поверхности, следует выполнять по формуле

σ;2γcσcr 2, (111)

здесь σ;2 = prm / t - расчетное кольцевое напряжение в оболочке;

σcr 2 - критическое напряжение, определяемое по формуле

σcr 2 = 0,55 E (rm / h)(t / rm)3/2, (112)

где h - высота конической оболочки (между основаниями);

rт - радиус, определяемый по формуле (110).

8.12. Расчет на устойчивость конической оболочки вращения, подверженной одновременному действию нагрузок, указанных в пп. 8.10 и 8.11, следует выполнять по формуле

, (113)

где значения Ncr и σcr 2 следует вычислять по формулам (109) и (112).

8.13. Расчет на устойчивость полной сферической оболочки (или ее сегмента) при r / t ≤ 750 и действии внешнего равномерного давления p, нормального к ее поверхности, следует выполнять по формуле

σ; ≤ γcσcr, (114)

где σ = prm /2 t - расчетное напряжение;

σcr = 0,1 Et / r - критическое напряжение принимаемое не более Ry;

r - радиус срединной поверхности сферы.







Дата добавления: 2015-08-28; просмотров: 477. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия