Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

КОЭФФИЦИЕНТЫ ДЛЯ РАСЧЕТА НА УСТОЙЧИВОСТЬ ЦЕНТРАЛЬНО-, ВНЕЦЕНТРЕННО-СЖАТЫХ И СЖАТО-ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ





ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТОВ РАСЧЕТНОЙ ДЛИНЫ КОЛОНН

Одноступенчатые колонны

Коэффициенты расчетной длины μ;1 для нижнего участка одноступенчатой колонны следует принимать в зависимости от отношения и величины (где J 1, J 2, l 1, l 2 - моменты инерции сечений и длины соответственно нижнего и верхнего участков колонны (рис. 24) и ):

Рис. 24. Схема одноступенчатой колонны

при верхнем конце, свободном от всяких закреплений, - по табл. 67;

при верхнем конце, закрепленном от поворота, и при возможности его свободного смещения - по табл. 68.

При неподвижном верхнем конце, шарнирно-опертом или закрепленном от поворота, значения коэффициента μ;1 для нижнего участка колонны следует определять по формуле

, (166)

где μ;12 - коэффициент расчетной длины нижнего участка при F 1 = 0;

μ;11 - коэффициент расчетной длины нижнего участка при F 2 = 0.

Значения коэффициентов μ;12 и μ;11 следует принимать:

при шарнирно-опертом верхнем конце - по табл. 69;

при неподвижном верхнем конце, закрепленном от поворота, - по табл. 70.

Коэффициенты расчетной длины μ;2 для верхнего участка колонны во всех случаях следует определять по формуле

μ;2 = μ;1 / α;1 ≤ 3. (167)


Таблица 67

Коэффициенты расчетной длины μ;1 для одноступенчатых колонн с верхним свободным концом

Расчетная схема α;1 Коэффициенты μ;1 при п
  0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,2 1,4 1,6 1,8 2,0 2,5 5,0 10,0 20,0
  2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
0,2 2,0 2,01 2,02 2,03 2,04 2,05 2,06 2,06 2,07 2,08 2,09 2,10 2,12 2,14 2,15 2,17 2,21 2,40 2,76 3,38
0,4 2,0 2,04 2,08 2,11 2,13 2,18 2,21 2,25 2,28 2,32 2,35 2,42 2,48 2,54 2,60 2,66 2,80 -   -
0,6 2,0 2,11 2,20 2,28 2,36 2,44 2,52 2,59 2,66 2,73 2,80 2,93 3,05 3,17 3,28 3,39 - - - -
0,8 2,0 2,25 2,42 2,56 2,70 2,83 2,96 3,07 3,17 3,27 3,36 3,55 3,74 - - - - - - -
1,0 2,0 2,50 2,73 2,94 3,13 3,29 3,44 3,59 3,74 3,87 4,00 - - - - - - - - -
1,5 3,0 3,43 3,77 4,07 4,35 4,61 4,86 5,05 - - - - - - - - - - - -
2,0 4,0 4,44 4,90 5,29 5,67 6,03 - - - - - - - - - - - - - -
2,5 5,0 5,55 6,08 6,56 7,00 - - - - - - - - - - - - - - -
3,0 6,0 6,65 7,25 7,82 - - - - - - - - - - - - - - - -

Таблица 68

Коэффициенты расчетной длины μ;1 для одноступенчатых колонн с верхним концом, закрепленным только от поворота

Расчетная схема α;1 Коэффициенты μ;1 при п
  0,1 0,2 0,3 0,4 0,6 0,6 0,7 0,8 0,9 1,0 1,2 1,4 1,6 1,8 2,0 2,5 5,0 10,0 20,0
  2,0 1,92 1,86 1,80 1,76 1,70 1,67 1,64 1,60 1,57 1,55 1,50 1,46 1,43 1,40 1,37 1,32 1,18 1,10 1,05
0,2 2,0 1,93 1,87 1,82 1,76 1,71 1,68 1,64 1,62 1,59 1,56 1,52 1,48 1,45 1,41 1,39 1,33 1,20 1,11 -
0,4 2,0 1,94 1,88 1,83 1,77 1,75 1,72 1,69 1,66 1,62 1,61 1,57 1,53 1,50 1,48 1,45 1,40 - - -
0,6 2,0 1,95 1,91 1,86 1,83 1,79 1,77 1,76 1,72 1,71 1,69 1,66 1,63 1,61 1,59 - - - - -
0,8 2,0 1,97 1,94 1,92 1,90 1,88 1,87 1,86 1,85 1,83 1,82 1,80 1,79 - - - - - - -
1,0 2,0 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 - - - - - - - - -
1,5 2,0 2,12 2,25 2,33 2,38 2,43 2,48 2,52 - - - - - - - - - - - -
2,0 2,0 2,45 2,66 2,81 2,91 3,00 - - - - - - - - - - - - - -
2,5 2,5 2,94 3,17 3,34 3,50 - - - - - - - - - - - - - - -
3,0 3,0 3,43 3,70 3,93 4,12 - - - - - - - - - - - - - - -

Таблица 69

Коэффициенты расчетной длины μ;12 и μ;11 для одноступенчатых колонн с неподвижным шарнирно-опертым верхним концом

Расчетная схема Коэффициенты μ;12 и μ;11 при l 2 / l 1
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,2 1,4 1,6 1,8 2,0
Коэффициенты μ;12
0,04 1,02 1,84 2,25 2,59 2,85 3,08 3,24 3,42 3,70 4,00 4,55 5,25 5,80 6,55 7,20
0,06 0,91 1,47 1,93 2,26 2,57 2,74 2,90 3,05 3,24 3,45 3,88 4,43 4,90 5,43 5,94
0,08 0,86 1,31 1,73 2,05 2,31 2,49 2,68 2,85 3,00 3,14 3,53 3,93 4,37 4,85 5,28
0,1 0,83 1,21 1,57 1,95 2,14 2,33 2,46 2,60 2,76 2,91 3,28 3,61 4,03 4,43 4,85
0,2 0,79 0,98 1,23 1,46 1,67 1,85 2,02 2,15 2,28 2,40 2,67 2,88 3,11 3,42 3,71
0,3 0,78 0,90 1,09 1,27 1,44 1,60 1,74 1,86 1,98 2,11 2,35 2,51 2,76 2,99 3,25
0,4 0,78 0,88 1,02 1,17 1,32 1,45 1,58 1,69 1,81 1,92 2,14 2,31 2,51 2,68 2,88
0,5 0,78 0,86 0,99 1,10 1,22 1,35 1,47 1,57 1,67 1,76 1,96 2,15 2,34 2,50 2,76
1,0 0,78 0,85 0,92 0,99 1,06 1,13 1,20 1,27 1,34 1,41 1,54 1,68 1,82 1,97 2,1
Коэффициенты μ;11
0,04 0,67 0,67 0,83 1,25 1,43 1,55 1,65 1,70 1,75 1,78 1,84 1,87 1,88 1,90 1,92
0,06 0,67 0,67 0,81 1,07 1,27 1,41 1,51 1,60 1,64 1,70 1,78 1,82 1,84 1,87 1,88
0,08 0,67 0,67 0,75 0,98 1,19 1,32 1,43 1,51 1,58 1,63 1,72 1,77 1,81 1,82 1,84
0,1 0,67 0,67 0,73 0,93 1,11 1,25 1,36 1,45 1,52 1,57 1,66 1,72 1,77 1,80 1,82
0,2 0,67 0,67 0,69 0,75 0,89 1,02 1,12 1,21 1,29 1,36 1,46 1,54 1,60 1,65 1,69
0,3 0,67 0,67 0,67 0,71 0,80 0,90 0,99 1,08 1,15 1,22 1,33 1,41 1,48 1,54 1,59
0,4 0,67 0,67 0,67 0,69 0,75 0,84 0,92 1,00 1,07 1,13 1,24 1,33 1,40 1,47 1,51
0,5 0,67 0,67 0,67 0,69 0,73 0,81 0,87 0,94 1,01 1,07 1,17 1,26 1,33 1,39 1,44
1,0 0,67 0,67 0,67 0,68 0,71 0,74 0,78 0,82 0,87 0,91 0,99 1,07 1,13 1,19 1,24

Таблица 70

Коэффициенты расчетной длины μ;12 и μ;11 для одноступенчатых колонн с неподвижным верхним концом, закрепленным от поворота

Расчетная схема Коэффициенты μ;12 и μ;11 при l 2 / l 1
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,2 1,4 1,6 1,8 2,0
Коэффициенты μ;12
0,04 0,78 1,02 1,53 1,73 2,01 2,21 2,38 2,54 2,65 2,85 3,24 3,70 4,20 4,76 5,23
0,06 0,70 0,86 1,23 1,47 1,73 1,93 2,08 2,23 2,38 2,49 2,81 3,17 3,50 3,92 4,30
0,08 0,68 0,79 1,05 1,31 1,54 1,74 1,91 2,05 2,20 2,31 2,55 2,80 3,11 3,45 3,73
0,1 0,67 0,76 1,00 1,20 1,42 1,61 1,78 1,92 2,04 2,20 2,40 2,60 2,86 3,18 3,41
0,2 0,64 0,70 0,79 0,93 1,07 1,23 1,41 1,50 1,60 1,72 1,92 2,11 2,28 2,45 2,64
0,3 0,62 0,68 0,74 0,85 0,95 1,06 1,18 1,28 1,39 1,48 1,67 1,82 1,96 2,12 2,20
0,4 0,60 0,66 0,71 0,78 0,87 0,99 1,07 1,16 1,26 1,34 1,50 1,65 1,79 1,94 2,08
0,5 0,59 0,65 0,70 0,77 0,82 0,93 0,99 1,08 1,17 1,23 1,39 1,53 1,66 1,79 1,92
1,0 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95 1,00 1,10 1,20 1,30 1,40 1,50
Коэффициенты μ;11
0,04 0,66 0,68 0,75 0,94 1,08 1,24 1,37 1,47 1,55 1,64 1,72 1,78 1,81 1,85 1,89
0,06 0,65 0,67 0,68 0,76 0,94 1,10 1,25 1,35 1,44 1,50 1,61 1,69 1,74 1,79 1,82
0,08 0,64 0,66 0,67 0,68 0,84 1,00 1,12 1,25 1,34 1,41 1,53 1,62 1,68 1,75 1,79
0,1 0,64 0,65 0,65 0,65 0,78 0,92 1,05 1,15 1,25 1,33 1,45 1,55 1,62 1,68 1,71
0,2 0,62 0,64 0,65 0,65 0,66 0,73 0,83 0,92 1,01 1,09 1,23 1,33 1,41 1,48 1,54
0,3 0,60 0,63 0,64 0,65 0,66 0,67 0,73 0,81 0,89 0,94 1,09 1,20 1,28 1,35 1,41
0,4 0,58 0,63 0,63 0,64 0,64 0,66 0,68 0,75 0,82 0,88 1,01 1,10 1,19 1,26 1,32
0,5 0,57 0,61 0,63 0,64 0,64 0,65 0,68 0,72 0,77 0,83 0,94 1,04 1,12 1,19 1,25
1,0 0,55 0,58 0,60 0,61 0,62 0,63 0,65 0,67 0,70 0,73 0,80 0,88 0,93 1,01 1,05

Двухступенчатые колонны

Коэффициенты расчетной длины μ;1 для нижнего участка двухступенчатой колонны (рис. 25) при условиях закрепления верхнего конца, приведенных в табл. 71, следует определять по формуле

, (168)

где μm 1, μm 2, μm 3 - коэффициенты, определяемые по табл. 71 как для одноступенчатых колонн по схемам рис. 26; β;1 = F 1 / F 3; β;2 = F 2 / F 3; δ2 = l 2 / l 1;

F 1, F 2, F 3 - продольные силы, приложенные соответственно в местах образования ступеней и к верху колонны;

J 1 m - среднее значение момента инерции для участков l 1 и l 2, определяемое по формуле

; (169)

J 2 m - среднее значение момента инерции для участков l 2 и l 3, определяемое по формуле

; (170)

J 1, J 2, J 3 и l 1, l 2, l 3 - моменты инерции сечений и длины соответственно нижнего, среднего и верхнего участков колонны.

Рис. 25. Схема двухступенчатой колонны

Значения коэффициентов расчетной длины μ;2 для среднего участка длиной l 2 следует определять по формуле

μ;2 = μ;1 / α;2, (171)

а коэффициентов расчетной длины μ3 для верхнего участка длиной l 3 - по формуле

μ;3 = μ;1 / α;3 ≤ 3, (172)

где

;

.

Рис. 26. Схемы одноступенчатых колонн (к табл. 71)

а - сила F приложена к нижнему участку колонны; б - то же, к среднему участку; в - то же, к верхнему участку

Таблица 71

Коэффициенты расчетной длины μm 1, μm 2, μm 3

Условия закрепления верхнего конца колонны Значения коэффициентов
μm 1 μm 2 μm 3
при нагрузках
по рис. 26, а по рис. 26, б по рис. 26, в
Свободный μm 1 = 2,0 μm 2 = 2,0 μm 3 = μ;1 (μ;1 - по табл. 67 при )
Закрепленный только от поворота μm 1 = μ;1 μm 2 = μ;1 μ;m3 = μ;1 (μ;1 - по табл. 68 при )
(μ;1 - по табл. 68 при α;1 = 0)
Неподвижный шарнирно-опертый μm 1 = μ;11 μm 2 = μ;11 μ;m3 = μ;12 (μ;12 - по табл. 69)
(μ;11 - по табл. 69)
Неподвижный закрепленный от поворота μm 1 = μ;11 μm 2 = μ;11 μ;m3 = μ;12 (μ;12 - по табл. 70)
(μ;11 - по табл. 70)

Таблица 71, а

Коэффициенты μ; для определения расчетных длин колонн и стоек постоянного сечения

Схема закрепления и вид нагрузки
μ 1,0 0,7 0,5 2,0 1,0 2,0 0,725 1,12

Таблица 72

Коэффициенты φ продольного изгиба центрально-сжатых элементов

Гибкость λ Коэффициенты φ; для элементов из стали с расчетным сопротивлением Ry, МПа (кгс/см2)
200 (2050) 240 (2450) 280 (2850) 320 (3250) 360 (3650) 400 (4100) 440 (4500) 480 (4900) 520 (5300) 560 (5700) 600 (6100) 640 (6550)
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         

Примечание. Значения коэффициентов φ; в таблице увеличены в 1000 раз.

Таблица 73

Коэффициенты влияния формы сечения η;

Тип сечения Схема сечения Значения η; при
0 ≤ ≤ 5 > 5
0,1 ≤ m ≤ 5 5 < m ≤ 20 0,1 ≤ m ≤ 5 5 < m ≤ 20
  - 1,0 1,0 1,0
  - 0,85 0,85 0,85
  - 0,75 + 0,02 0,75 + 0,02 0,85
  - (1,35 - 0,05 m) - 0,01(5 - m) 1,1 1,1
  0,25 (1,45 - 0,05 m) - 0,01(5 - m) 1,2 1,2
0,5 (1,75 - 0,1 m) - 0,02(5 - m) 1,25 1,25
≥1,0 (1,90 - 0,1 m) - 0,02(6 - m) 1,4 - 0,02 1,3
  - ηs ηs
  -
  0,25 (0,75 + 0,05 m) + + 0,01(5 - m) 1,0 1.0
0,5 (0,5 + 0,1 m) + + 0,02(5 - m) 1,0 1,0
≥1,0 (0,25 + 0,15 m) + + 0,03(5 - m) 1,0 1,0
  0,5 (1,25 - 0,05 m) - - 0,01(5 - m) 1,0 1,0
≥1,0 (1,5 - 0,1 m) - - 0,02(5 - m) 1,0 1,0
  0,5 1,4 1,4 1,4 1,4
1,0 1,6 - 0,01(5 - m) 1,6 1,35 + 0,05 m 1,6
2,0 1,8 - 0,02(5 - m) 1,8 1,3 + 0,1 m 1,8
  0,5 1,45 + 0,04 m 1,65 1,45 + 0,04 m 1,65
1,0 1,8 + 0,12 m 2,4 1,8 + 0,12 m 2,4
1,5 2,0 + 0,25 m +0,1 - - -
2,0 3,0 + 0,25 m + 0,1 - - -
               

Примечания: 1 Для типов сечений 5-7 при подсчете значений Af / Aw площадь вертикальных элементов полок не следует учитывать.

2. Для типов сечений 6-7 значения ηs следует принимать равными значениям η; для типа 5 при тех же значениях Af / Aw.

Таблица 74

Коэффициенты φe для проверки устойчивости внецентренно-сжатых (сжато-изгибаемых) сплошностенчатых стержней в плоскости действия момента, совпадающей с плоскостью симметрии

Условная гибкость Коэффициенты φe при приведенном относительном эксцентриситете mef
0,1 0,25 0,5 0,75 1,0 1,25 1,5 1,75 2,0 2,5 3,0 3,5 4,0
0,5                          
1,0                          
1,5                          
2,0                          
2,5                          
3,0                          
3,5                          
4,0                          
4,5                          
5,0                          
5,5                          
6,0                          
6,5                          
7,0                          
8,0                          
9,0                          
10,0                          
11,0                          
12,0                          
13,0                          
14,0                          

Продолжение табл. 74

Условная гибкость Коэффициенты φe при приведенном относительном эксцентриситете mef
4,0 4,5 5,0 5,5 6,0 6,5 7,0 8,0 9,0          
0,5                            
1,0                            
1,5                            
2,0                            
2,5                            
3,0                            
3,5                            
4,0                            
4,5                            
5,0                            
5,5                            
6,0                            
6,5                            
7,0                            
8,0                            
9,0                            
10,0                            
11,0                            
12,0                            
13,0                            
14,0                            

Примечания: 1. Значения коэффициентов φe в таблице увеличены в 1000 раз.

2. Значения φe принимать не выше значений φ;.

Таблица 75

Коэффициенты φе для проверки устойчивости внецентренно-сжатых (сжато-изгибаемых) сквозных стержней в плоскости действия момента, совпадающей с плоскостью симметрии

Условная приведенная гибкость Коэффициенты φe при относительном эксцентриситете m
0,1 0,25 0,5 0,75 1,0 1,25 1,5 1,75 2,0 2,5 3,0 3,5 4,0
0,5                          
1,0                          
1,5                          
2,0                          
2,5                          
3,0                          
3,5                          
4,0                          
4,5                          
5,0                          
5,5                          
6,0                          
6,5                          
7,0                          
8,0                          
9,0                          
10,0                          
11,0                          
12,0                          
13,0                          
14,0                          

Продолжение табл. 75

Условная приведенная гибкость Коэффициенты φe при относительном эксцентриситете m
4,0 4,5 5,0 5,5 6,0 6,5 7,0 8,0 9,0          
0,5                            
1,0                            
1,5                            
2,0                            
2,5                            
3,0                            
3,5                            
4,0                            
4,5                            
5,0                     &nbs





Дата добавления: 2015-08-28; просмотров: 434. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия