Студопедия — Ударный способ бурения
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ударный способ бурения






Ударный способ бурения в зависимости от способа отбора керна подразделяют на: ударный сплошным забоем, клюющий кольцевым забоем и ударно-забивной или просто забивной кольцевымзабоем.

Ударное бурение сплошным забоем заключается в разру­шении пород забоя долотами, удалении продуктов разруше­ния желонками и получении образцов пород в виде шлама. Ударное бурение сплошным забоем на море переходят только при необходи­мости разрушения встречающихся валунов и крепких по­род.

Клюющий способ бурения заключается в том, что буровой снаряд, включающий жестко соединенные между собой керноприемный стакан и утяжеленную трубу, сбрасывают на забой с некоторой высоты; стакан углубляется в породу, за­тем снаряд поднимают на поверхность для отбора керна из стакана. Величина углубления стакана в породы в рейсе зави­сит от энергии удара снаряда о забой. При бурении этим способом на море достичь значений энергии удара, достаточ­ных для погружения стакана в породы на глубину хотя бы 0,1—0,2 м, трудно, так как буровой снаряд движется в сква­жине, заполненной водой, и испытывает большие гидравли­ческие сопротивления движению. Поэтому на море этот спо­соб бурения не применяют.

Основной разновидностью ударного бурения в рыхлых породах на море является забивной способ, обеспечивающий получение образцов пород в виде керна. Отбор керна при этом осуществляется нанесением ударов по трубчатому керноприемнику, снабженному упроченным кольцевым башма­ком, который выполняет роль породоразрушающего инстру­мента. Выход керна при отборе его из обсадной колонны забивными керноприемниками примерно такой же, как и при отборе, его вдавливаемыми грунтоносами.

Таким образом, наибольший выход керна рыхлых пород на море имеет место при вдавливающем способе бурения со скоростью погружения обсадных труб и грунтоносов в породы менее 0,02 м/с и всего на 3—4 % меньше при забивном способе со скоростью погружения обсадных труб и забивных керноприемных снарядов в породы более 0,16 м/с.

Однако ударно-забивной способ позволяет бурить разве­дочные скважины любых необходимых диаметров в рыхлых, крепких и перемежающейся крепости породах. Бурение вдавливанием экономически оправдано только диаметром до 0,108 м и только в рыхлых отложениях без включения гальки и валунов и поэтому не вполне отвечает обобщенным ГМТ, предъявляемым к бурению разведочных скважин.

При бурении многих видов разведочных скважин требует­ся внедрение в коренные породы (структурные, разведочные на россыпи, уголь и т.д.). Выбуривание керна из таких пород возможно только вращательным способом. Это единствен­ный способ производительного бурения, обеспечивающий получение качественного керна в твердых и крепких поро­дах. Во многих условиях вращательный способ является не­заменимым при инженерно-геологических изысканиях, так как позволяет получать колонки керна мягких и твердых по­род без существенного искажения их природных физико-механических свойств.

Рис.17-Последовательность выполнения операций в рейсе при погружении колонны обсадных труб в породы и отборе керна из них новыми конструкциями забивного снаряда и забивного керноприемника: а - погружение в породы обсадной колонны; б - сбрасывание керноприемного стакана на забой скважины; в - спуск в скважину ударной штанги и погружение стакана в породы; г - извлечение штанги из скважины и настройка ловителя на захват стакана; д - спуск ударной штанги с ловителем в скважину, захват стакана и подъем их на поверхность; 1 - обсадная колонна труб; 2 - забивной снаряд; 3 - стакан керноприемный; 4 - ударная штанга; 5 - заблокированный ловитель.

 

Особенности и проблемы бурения на море

Эффективность применения на море способов бурения, признанных рациональными для выполнения геолого­разведочных задач, ниже, чем на суше. Обусловлено это ря­дом причин:

§ качкой и дрейфом ПБУ;

§ сильной обводненностью и неустойчивостью рыхлых пород разрезов;

§ требования­ми недопущения загрязнения окружающей среды;

§ трудностью организации замкнутой циркуляции промывочных растворов;

§ нахождением придонного устья скважины вне видимости бурильщика и обусловленны­ми этим трудностями;

§ повышенным износом бурового обо­рудования и инструментов из-за работы в агрессивной среде;

§ особенностями способов и схем бурения и т.д.

 

Традиционная схема ударно-забивного бурения требует выполнения большого количества трудоемких и опасных для жизни людей операций.

Станки с ударными кривошипно-шатунными механизмами на плавучих буровых установках не применяют, так как они не обеспечивают изменения навески снарядов синхронно с качкой установки. Погружают трубы и керноприемники в породы при помощи лебедок, причем обсадную колонну по­гружают ударами по ее наголовнику снарядом, выполненным в виде монолитного груза с направляющей штангой, сколь­зящей внутри колонны. После погружения колонны на каж­дые 1—2 м с нее снимают забивной снаряд и рейсами по 0,2—0,5 м при помощи забивных стаканов и желонок из ко­лонны выбирают керн. Затем на колонну, возвышающуюся на несколько метров над палубой установки, снова устанав­ливают забивной снаряд, что в условиях качки ПБУ трудно и небезопасно.

Из-за опасности раскачивания подвешенного на тросе забивного снаряда максимальное значение его массы ограничи­вают 600 кг, независимо от диаметра и длины погружаемых в породы обсадных колонн. Недостаток массы снаряда не поз­воляет эффективно погружать в породы колонны труб диа­метром 0,168/0,188 м, длиной более 20 м. В то же время при бурении на море зачастую для перекрытия слоя воды приме­няют колонны труб диаметром 0,325/0,351 м, длиной до 200—300 м, которые одновременно используются в качестве об­садных и требуют погружения в породы.

Важной проблемой является снижение потерь энергии уда­ра в погружаемой колонне. На море к потерям на продоль­ные деформации колонны добавляются потери на ее ради­альные деформации, обусловленные тем, что в интервале слоя воды колонна не защищена от изгиба. Длина отдельных труб колонны при бурении на море обычно не превышает 2 м, так как они массивные (толщина стенки 0,008 м и бо­лее), а в условиях качки ПБУ трудно наращивать длинные трубы больших диаметров с треугольной резьбой, имеющей угол наклона менее 2°. Поэтому потери энергии удара в ко­лонне длиной, например, 100 м с 50 муфтовыми соединения­ми достигают 90 % (без учета потерь на радиальные дефор­мации).

Требуют совершенствования при ударно-забивном бурении технические средства и технологии отбора керна.

Экспериментально установлено, что при бурении на море по традиционным схемам забивного способа трудно обеспечить высокий выход керна, так как:

· часть керна отжимается в забой уже при погружении об­садной колонны труб в породы из-за гидродинамического воздействия на них находящейся в колонне воды и проявле­ния свайного эффекта и поступившие в колонну породы по тем же причинам уплотнены;

· керноприемник, забиваемый затем в поступившие в ко­лонну и ограниченные ее стенками породы, дополнительно уплотняет и отжимает их в забой;

· в каждом рейсе после извлечения керноприемника на стенках колонны остается уплотненное кольцо пород, кото­рые в последующем рейсе при работе ударной штангой пе­ремешиваются с водой и вместе с ней изливаются из скважи­ны при извлечении керноприемника.

При отборе из колонны керна сильнообводненных пород отмечаются случаи их дополнительного поступления с забоя вследствие уменьшения над ними горного и гидростатическо­го давления.

Трудности возникают также при забивном бурении в по­родах с включением галечников и валунов. Здесь при погру­жении колонны, поступающие в нее галечники и валуны рас­клиниваются и распределяются по всему ее сечению. После­дующее погружение в них керноприемника затруднительно, так как галька и валуны не входят в керноприемник из-за расклинивания или если их размеры превышают его диаметр. Смещение гальки и валунов керноприемником в стороны ограничено стенками колонны.

При морском бурении скважина зачастую до уровня моря заполнена водой, которая создает сопротивление движению ударных инструментов, и энергии удара их недостаточно для эффективного разруше­ния пород. Поэтому при бурении на море в суглинках с включениями 20 % гравия и гальки на погружение обсадных труб на глубину 10—12 м требуется 15-20 мин, а на отбор пород из труб, поступивших в них из этого интервала, — 3-3,5 ч.

Из-за подводных течений, дрейфа ПБУ, расположения забивных снарядов и механизмов на колонне на большом рас­стоянии от дна моря трудно обеспечить ее вертикальность при погружении в породы.

 

Вращательное бурение

Бурение вращателями роторными и перемещаемыми в вертикальных направляющих вышки. В условиях качки ПБУ наиболее сложно вращательное бурение станками шпиндель­ного типа. Существующие у них системы принудительных подач, подвески и разгрузки инструментов для условий моря непригодны, так как качка и дрейф ПБУ при жесткой связи ее со станком и последнего с бурильной колонной приводят к изгибам и поломкам труб вследствие смещения оси кронблока от оси скважины, периодическим отрывам буро­вого снаряда от забоя, утрате и разрушению керна, невоз­можности поддерживать необходимые режимы бурения. С целью повышения эффективности бурения с ПБУ вращательным способом отечественными и зарубежными специа­листами предложен ряд конструктивно-технологических ре­шений.

В АО "Дальморгеология" для бурения с плавсредств разра­ботаны и применяются в производстве два типа вращателей: ВМБ-5 на базе ротора от буровой установки УРБ-3 и пере­мещаемый в вертикальных направляющих вращатель от бу­рового комплекса КГК-100. При отсутствии дрейфа, боковой и продольной качки ПБУ базовые варианты этих вращателей позволяют почти беспрепятственно перемещаться в верти­кальном направлении плавсредству вместе с ротором и на­правляющими относительно бурового снаряда.

Опыт бурения вращателями описанных конструкций по­казал, что при волнении моря более 2 баллов на забой не передается заданная осевая нагрузка, так как ведущая ВМБ-5 заклинивается в роторе, а подвижной вращатель КГК-100 — в направляющих. Так как при бурении этими вращателями бурильная колонна обычно подвешена на тросе лебедки, же­стко соединенной с плавсредством, его качка приводит к пе­риодическим отрывам бурового снаряда от забоя, разрушает керн и не позволяет поддерживать необходимую осевую на­грузку на породоразрушающий инструмент.

Такие же трудности отмечаются при бурении в сложных гидрологических условиях моря с применением силового вертлюга, используемого для вращения бурильной колонны. Эта схема принципиально схожа со схемой бурения враща­телем от КГК-100.

Общий недостаток вращателей, устанавливаемых на вра­щаемой обсадной колонне, — большие потери времени и труда на приведение в каждом рейсе вращателя в рабочее положение и на разворот извлекаемых из скважины обсад­ных труб, резьбовые соединения которых при вращательном бурении сильно затягиваются.







Дата добавления: 2015-08-29; просмотров: 938. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Studopedia.info - Студопедия - 2014-2024 год . (0.014 сек.) русская версия | украинская версия