Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лекция №13. Методы разработки морских месторождений. Системы расположения скважин. Режимы работы пластов.





 

Разработка морских месторождений требует применения стратегии, отличной от разработки наземных месторождений. Основное отличие заключается в числе скважин и их моделях.

На суше мож­но использовать простую сетчатую модель, в то время как в мор­ских условиях скважины приходится бурить с нескольких «зак­репленных» мест (платформы, подводные опорные плиты). Таким образом, определение мест дренирования имеет более важное зна­чение в море по сравнению с сушей. Но нефтяные компании уже разработали технологию направленного бурения для достижения максимального охвата с каждой скважины. Статойл, например, пробурил за последнее время 7-километровую скважину, расходя­щуюся на 5 км вокруг платформы Статфьорд вглубь пласта, рас­положенного под морским дном на глубине 3 500 м. Помимо это­го, все большее значение приобретает применение горизонтальных скважин для более тонких пластов. Нефтяная зона пласта Тролль будет разрабатываться при помощи горизонтальных скважин, про­буренных с подводных опорных плит.

При морских разработках на платформах должны быть размещены скважины, оборудование для добычи, вспомогательные системы и жилые помещения для персонала. Во многих случаях, подводные скважины могут использоваться в качестве альтернативы или как дополнение к платформенным скважинам. Следует также учиты­вать наличие многофазного потока, даже, если перерабатываю­щий центр (платформа или терминал) расположены на достаточно большом расстоянии.

По мере увеличения веса верхних строений, будет значительно увеличиваться и стоимость опорных блоков платформы. Поэтому важно уменьшить объем расположенного на ней оборудования. Это имеет существенное значение на всех фазах разработки про­екта. Любое увеличение количества перерабатывающего оборудо­вания на платформе также приведет к увеличению персонала, количества инструментов и ремонта оборудования. Далее должна быть составлена схема разработки месторождения, основанная на модели дренирования и определении требуемого типа продукции.

На фазе оценки возможности осуществления проек­та рассматривают различные сценарии разработки, а оптимальная схема разработки месторождения получает детальное завершение на фазе формулирования концепции проекта.

 

Рис.31- Морская платформа в разрезе (OLF-1990)

Типичные сценарии технических схем разработки месторожде­ния включают:

1. устьевые платформы, + обрабатывающие платформы + жилые платформы;

2. интегрированные эксплуатационные платформы;

3. плавучие эксплуатационные системы;

4. подводные эксплуатационные системы.

Кроме этого, должна быть рассмотрена система транспортировки, включающая:

- газоконденсатные экспортные трубопроводы;

- экспортные нефтепроводы;

- систему хранения нефти в сочетании с ее морской погрузкой.

 

Благодаря компактному характеру морской установки потребуют­ся значительные дополнительные затраты для обеспечения более высоких стандартов к безопасности и созданию условий для пер­сонала (жилые помещения, спасательные шлюпки, и т. д.) Верто­летная эвакуация должна быть наготове для работающего на плат­форме персонала.

На рис. 31 показана типичная морская платформа в разрезе. На рис. 32 показаны в разрезе эксплуатационные установки, расположенные на современном судне устройства для добычи, применяющиеся в Северном море.

До внедрения вторичных и третичных методов увеличения нефте-отдачи добыча нефти осуществлялась за счет проявления естествен­ной энергии пласта и насыщающих его флюидов.

Рис. 32 Современные судовые эксплуатационные установки для добычи в Северном море (судно «Норне» Статойла)

Естественный (или как его еще называют, первичный) режим притока жидко­стей и газа к скважине может осуществляться посредством:

— действия сил упругости (так называемый упругий и упруго-водо­напорный режимы фильтрации);

— выделения и расширения, первоначально растворенного в нефти газа (режим растворенного газа);

— расширения газа в газонасыщенной части пласта (режим газовой шапки);

— действия сил тяжести (гравитационный режим);

— переуплотнения пород-коллекторов при частичной потере проч­ности скелетом породы под воздействием чрезмерно возросших эффективных напряжений на породу-коллектор.

Упругий режим проявляется наиболее полно на начальной стадии эк­сплуатации месторождения. При упругом режиме фильтрации движе­ние нефти из пласта к скважине обусловлено сжимаемостью нефти и воды, насыщающих продуктивный пласт, приводящей к увеличе­нию их объема при снижении пластового давления, и упругой де­формацией породы, снижающей объем перового пространства. При проявлении чисто упругого режима нефтеотдача пласта обычно не превышает 1—2%.

Наличие большой по протяженности водонасыщенной зоны вок­руг нефтяного пласта способствует переходу упругого режима в режим упруго-водонапорный, при котором используются упругие свойства законтурной воды (т.е. воды, находящейся за внешним контуром нефтеносности) и водоносного пласта. Этот режим в свою очередь может переходить в жестко-водонапорный режим, при котором объем отбираемой из скважин продукции (нефти, воды и газа) компенсируется притоком воды из законтурной зоны пласта. Пластовое давление в залежи при этом поддерживается на постоянном уровне, обеспечивая тем самым эффективную добычу нефти. Упруго- и жестко-водонапорный режимы фильтрации по­зволяют отобрать от 35 до 75% нефти, первоначально содержа­щейся в пласте.

При падении пластового давления ниже давления насыщения на­чинается процесс выделения из нефти газа, первоначально ра­створенного в ней. При дальнейшем снижении давления пузырьки газа расширяются и вытесняют нефть из порового пространства. Этот процесс получил название режима растворенного газа в свя­зи с тем, что в большой степени именно первоначально раство­ренный в нефти газ обеспечивает движение нефти к скважинам и ее добычу. Режим растворенного газа имеет более длительный эф­фект в стратифицированных пластах или в пластах с низкой про­ницаемостью в вертикальном направлении, предотвращающей от­носительно быструю сегрегацию газа, вызванную различием в плот­ностях нефти и газа. В некоторых случаях «всплывание» газа может приводить к образованию так называемой вторичной газовой шап­ки. Как правило, режим растворенного газа является одним из наименее эффективных режимов фильтрации и позволяет добыть от 5 до 25% находящейся в пласте нефти.

При наличии в залежи газовой шапки (т.е. скопления газа над нефтенасыщенной частью пласта) добыча нефти осуществляется в основном за счет режима газовой шапки или газонапорного режи­ма. Высокая сжимаемость газа и значительный объем газонасы­щенной части пласта обеспечивают продолжительную и эффек­тивную добычу: до 40% находящейся в пласте нефти может быть добыто при проявлении газонапорного режима.

В нефтеносных залежах большой мощности и крутопадающих не­фтяных пластах значительная часть запасов нефти может быть ото­брана за счет проявления гравитационных сил. В отдельных случаях гравитационный режим фильтрации позволяет достичь чрезвычайно высоких технологических показателей добычи.

Процесс переуплотнения пород-коллекторов может возникнуть при добыче нефти или газа на режиме истощения в случаях, когда эффективные напряжения на породу (т.е. разница между горным давлением и противодействующим ему пластовым давлением) ста­новятся значительными (и могут даже превысить предел прочности породы) и приводят к ее переуплотнению или даже частичному разрушению. Это, в свою очередь, может иметь следствием посте­пенное или внезапное сокращение перового объема пласта или залежи. В первом случае подобное сокращение перового простран­ства может сопровождаться оседанием поверхности Земли (место­рождение Уилмингтон в Калифорнии, участок М-6 в Венесуэле). В случае разработки месторождений шельфа проседание дна при­водит к увеличению глубины моря, особенно ощутимой в эпи­центре месторождения, и, как следствие, к погружению морской платформы (месторождение Экофиск на норвежском континен­тальном шельфе). При резком сокращении порового пространства разработка залежи может сопровождаться подземными толчками небольшой силы, напоминающими слабые землетрясения. Значи­тельные землетрясения могут возникать при нарушении геодина­мической обстановки в районе месторождения, вызванном его раз­работкой (Ромашкинское месторождение в Татарии, Старогроз­ненское — в районе г. Баку, небольшие месторождения в районе Ферганской долины в Средней Азии). К наиболее крупным земле­трясениям, инициированным разработкой месторождения, специ­алисты относят землетрясение 1974 г., имевшее место в районе газового месторождения Газли в Узбекистане.

Как правило, разработка месторождений природных углеводородов происходит при одновременном проявлении нескольких режимов фильтрации. При этом для правильного описания процесса добычи и оценки конечных показателей разработки важно выделить один или несколько основных режимов фильтрации.

Рис. 33- Динамика пластового давления (р) и газового фактора (ГФ) при различных режимах фильтрации.

На рис.33показа­но, как изменяется пластовое давление и газовый фактор (ГФ) при проявлении того или иного режима фильтрации.

С целью достижения более высоких показателей разработки (боль­шая экономическая эффективность, большая нефтеотдача, менее продолжительная эксплуатация и т.п.) используются вторичные и третичныеметоды добычи нефти, или, как их еще называют, методы увеличения нефтеотдачи (МУН). Как правило, МУН осно­вываются на закачке в пласт рабочих агентов, в качестве которых могут служить вода с добавками различных активных веществ, как, например, загустители воды (полимеры), поверхностно-ак­тивные вещества (ПАВ), а также воздух, углеводородные раство­рители, пластовый газ и другие агенты. Различие между вторич­ными и третичными методами заключается во времени их исполь­зования: вторичные методы начинают применять с самого начала разработки или по прошествии короткого промежутка времени, в то время как третичные методы обычно начинают использовать, когда значительная часть запасов нефти уже добыта.

Использование вторичных и третичных методов добычи преследу­ет достижение следующих целей :

§ поддержания пластового давления. При закачке в пласт доста­точных объемов воды или газа пластовое давление может под­держиваться на уровне, необходимом для достижения высоких показателей разработки (например, на уровне, несколько пре­вышающем давление насыщения нефти газом);

§ более высокой степени вытеснения нефти. Некоторые из аген­тов, подаваемых в пласт (растворители, ПАВ и др.), приводят к уменьшению остаточной нефтенасыщенности и способствуют тем самым повышению степени вытеснения нефти;

§ увеличения степени охвата пласта процессом вытеснения нефти. Такие технологии, как, например, закачка полимерного ра­створа, попеременная закачка воды и газа, закачка пен, подача в пласт тепла (закачка горячей воды или пара) или же внутрипластовая генерация тепла (внутрипластовое горение) имеют своей целью улучшение соотношения подвижности фильтрую­щихся в пласте нефти и воды или же нефти и газа* и, как след­ствие, увеличение охвата пласта процессом вытеснения.

Традиционно используемые методы добычи обычно позволяют до­быть не более 45% от первоначальных запасов нефти в пласте. Таким образом, большая часть запасов оказывается неизвлеченной. Величина неизвлеченных запасов зависит от сложности геологи­ческого строения месторождения, его местоположения, стратегии его разработки и используемых методов добычи и в значительной степени определяется экономикой или уровнем рентабельности до­бычи. Целью применения методов увеличения нефтеотдачи явля­ется, вообще говоря, увеличение объема извлекаемых запасов, которые могут быть экономически выгодно добыты по сравнению с традиционными методами за счет увеличения охвата пласта про­цессом вытеснения нефти и/или за счет повышения степени вы­теснения нефти из пласта.

Существуют различные классификации и многочисленные определе­ния технологий и методов добычи. Это в особенности справедливо для методов увеличения нефтеотдачи.

Термин МУН используется в отношении технологий до­бычи, позволяющих повысить извлекаемые запасы по сравнению с традиционно используемыми на данный момент времени технологиями нефтеизвлечения.

Характерными чертами МУН являются закачка в пласт агентов, отличных от традиционно используемых воды и углеводородного газа, и необходимость проведения опытно-промышленных работ.

Методы увеличения нефтеотдачи включают (но не ограничивают­ся) следующие технологии нефтеизвлечения:

· попеременную или чередующуюся закачку воды и газа;

· физико-химические МУН (закачка полимеров, поверхностно-активных веществ, гелей, пен и т.п.);

· закачку газов, отличных от углеводородных (например, угле­кислого газа, азота, дымовых газов и т.п.);

· микробиологические методы увеличения нефтеотдачи;

· термические методы увеличения нефтеотдачи.

 

В течение двух последних десятилетий в дополнение к термину МУН стал использоваться еще один термин, переводимый как методы усовершенствованной нефтеотдачи, объединяющий собой все известные методы и технологии более эффективного нефтеиз­влечения. Термин методы усовершенствованной нефтеотдачи вклю­чает в себя все методы, в результате применения кото­рых может быть достигнута более высокая нефтеотдача по сравнению с ожидаемой в определенный момент вре­мени от использования традиционных технологий неф­теизвлечения

Например, более высокая нефтеотдача может быть достигнута как за счет сочетания традиционных технологий добычи, более каче­ственных управления и контроля за разработкой залежи и сниже­ния расходов, так и за счет использования методов увеличения нефтеотдачи.

Обычно используемые методы усовершенствованной нефтеотдачи включают в себя, но не ограничиваются следующими технологиями:

— закачка воды или газа;

— дополнительное разбуривание залежи;

— бурение горизонтальных скважин для добычи нефти из тонких пропластков или же «карманов» пласта с неизвлеченной неф­тью;

— бурение скважин большой протяженности для добычи нефти из удаленных частей пласта (эта технология обычно используется при разработке шельфовых месторождений или в условиях, при которых обустройство новой буровой площадки сопряжено с неоправданно большими затратами времени и средств);

— усовершенствование системы сбора и подготовки нефти, воды и газа;

— снижение устьевого давления в добывающих скважинах;

— использование лучшей стратегии заканчивания скважин.

Как следует из определения МУН, объектами применения методов увеличения нефтеотдачи являются запасы нефти, остающиеся в пласте после применения первич­ных и вторичных методов добычи; так называемые трудно извлекаемые запасы нефти (тяжелая и вязкая нефть, пласты с низкой проницаемостью, залежи со сложным геологическим строением и т.д.).

В обоих случаях объектами применения МУН являются запасы неф­ти, которые могут быть извлечены экономически выгодно. Это означает, что объем нефти, добытой с помощью МУН, зависит от определенных условий, таких как экономические условия, поли­тическая ситуация, уровень технологии и т.п., и не представляет собой неизменную величину, как, например, начальные геологи­ческие запасы нефти.

Очевидно, что наилучшим вариантом разработки нефтяного мес­торождения является вариант, позволяющий отобрать максималь­ный объем нефти из пласта минимальным числом скважин за кратчайший период времени. Кажущаяся на вид простой, задача оптимального расположения скважин по площади залежи, обеспе­чивающего наилучшие показатели разработки, является одной из наиболее сложных.

Решение задачи осложняется еще и тем, что оптимальное число скважин, их взаимное расположение и характер заканчивания бу­дут, вообще говоря, разными в зависимости от:

— типа залежи (нефтяная, газовая, нефтяная с газовой шапкой и т.д.);

— запасов нефти и газа в пласте;

— свойств пласта и насыщающих его жидкостей и газа;

— местоположения залежи (суша, шельф, глубоководный шельф);

— политической и экономической ситуации.

Решение указанной задачи зависит как от общего числа скважин, их типа (добывающая, нагнетательная, наблюдательная и т.п.) и взаимного расположения на площади, так и от применяемого мето­да нефтедобычи.

Большую помощь в решении указанной задачи могут оказать не­которые стандартные правила и подходы, накопленные специали­стами в процессе разработки многих сотен залежей природных уг­леводородов и которые кратко описаны ниже.

Газовая залежь

В случае запечатанной (т.е. изолированной от других пород-коллекто­ров) залежи газа скважины следует располагать равномерно по пло­щади с использованием той или иной системы расстановки. Выбор интервала перфорации в этом случае не оказывает существенного влияния на показатели разработки (рис. 34 а).

В случае, когда газовая залежь подстилается подошвенной водой, рекомендуется интервал перфорации располагать как можно дальше от начального положения ВНК, т.е. в верхней части разреза (рис. 34 б).

 

Рис. 34-Расположение скважин по площади при разработке газовой залежи: а — запечатанная газовая залежь. Метод разработки — режим газовой шапки; б — газовая залежь, подстилаемая подошвенной водой. Метод разработки — сочетание режима газовой шапки и водонапорного режима

 

Нефтяная залежь

В случае нефтяной залежи с подошвенной водой расположение сква­жин должно учитывать форму залежи и водонефтяного контакта. Такое расположение скважин часто называют батарейным. Число та­ких батарей и количество скважин в каждой из них зависит от вели­чины запасов месторождения. При этом в средней части залежи обыч­но следует располагать так называемый разрезающий ряд добываю­щих (или нагнетательных) скважин (рис. 35 а).

В случае запечатанной нефтяной залежи с высоким углом падения пластов, добывающие скважины обычно располагаются в нижней ча­сти структуры по равномерной трех- или четырехточечной сетке с предпочтительно низким интервалом перфорации (рис.35б).

 

Рис. 35-Расположение скважин по площади при разработке нефтяной залежи [4]: а— нефтяная залежь, подстилаемая подошвенной водой. Метод разработки— естественный водонапорный режим; б— запечатанная нефтяная залежь. Метод разработки — сочетание режима растворенного газа и гравитационного режима

Такое расположение скважин обеспечивает благоприятные условия эксплу­атации в силу следующих причин:

1. при снижении пластового давления ниже давления насыщения газ, первоначально растворенный в нефти, выделяется из не­фти преимущественно в призабойной зоне скважин и в выше­лежащих частях залежи, создавая тем самым более или менее благоприятные условия добычи в условиях режима растворен­ного газа;

  1. гравитационные силы при таком расположении скважин помо­гают вязкостным силам и увеличивают приток нефти к сква­жинам, в то время как газ, в силу проявления тех же вязкост­ных сил, движется вверх по восстанию пластов. В некоторых случаях такой процесс добычи приводит к образованию вто­ричной газовой шапки.
Рис.36-Расположение скважин по площади при разработке нефтяной залежи с газовой шапкой: а — запечатанная нефтяная залежь с газовой шапкой. Метод разработки — режим газовой шапки. Интервал перфорации — в нижней части разреза; б — нефтяная залежь с газовой шапкой и подо­швенной водой. Метод разработки — сочетание режима газовой шапки и естественного водонапорного режима. Интервал перфорации — в нижней части разреза, ближе к ВНК

Нефтяная залежь с газовой шапкой

В случае изолированной нефтяной залежи с газовой шапкой распо­ложение скважин должно учитывать начальное положение газонеф­тяного контакта (ГНК) (рис.36 а). Также, как и в случае нефтя­ной залежи, подстилаемой подошвенной водой, в купольной части залежи, вдоль длинной ее оси, следует пробурить центральный ряд добывающих скважин. Интервал перфорации должен располагаться в нижней части продуктивной толщи.

Подобного рода соображения могут быть использованы при рас­становке скважин на нефтяной залежи с газовой шапкой и подошвенной водой, но с одним существенным отличием: интер­вал перфорации в этом случае должен находиться в нижней части структуры и ближе к ВНК, чем к ГНК (рис.36 б).







Дата добавления: 2015-08-29; просмотров: 2855. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия