Фракционный состав
Важнейшим показателем качества нефти является фракционный состав. Фракционный состав определяется при лабораторной перегонке с использованием метода постепенного испарения, в процессе которой при постепенно повышающейся температуре из нефти отгоняют части - фракции, отличающиеся друг от друга пределами выкипания. Каждая из фракций характеризуется температурами начала и конца кипения. Промышленная перегонка нефти основывается на схемах с так называемым однократным испарением и дальнейшей ректификацией. Фракции, выкипающие до 350оС, отбирают при давлении несколько превышающим атмосферное, называют светлыми дистиллятами(фракциями). Названия фракциям присваиваются в зависимости от направления их дальнейшего использования. В оснавном, при атмосферной перегонке получают следующие светлые дистилляты: 140оС (начало кипения) - бензиновая фракция, 140-180оС - лигроиновая фракция(тяжелая нафта), 140-220оС (180-240оС) - керосиновая фракция, 180-350оС (220-350оС, 240-350оС) - дизельная фракция (легкий или атмосферный газойль, соляровый дистиллят). Фракция, выкипающая выше 350оС является остатком после отбора светлых дистиллятов и называется мазутом. Мазут разгоняют под вакуумом и в зависимости от дальнейшего направления переработки нефти получают следующие фракции: для получения топлив - 350-500оС вакуумный газойль (дистиллят), >500оС вакуумный остаток (гудрон); для получения масел - 300-400оС (350-420оС) легкая масленная фракция (трансформаторный дистиллят), 400-450оС (420-490оС) средняя масленная фракция (машинный дистиллят), 450-490оС тяжелая масленная фракция (цилиндровый дистиллят), >490оС гудрон. Мазут и полученные из него фракции - темные. Таким образом фракционирование – это разделение сложной смеси компонентов на более простые смеси или отдельные составляющие. Продукты, получаемые как при первичной, так и при вторичной переработки нефти, относят к светлым, если они выкипают до 350оС, и к темным, если пределы выкипания 350оС и выше. Нефти различных месторождений заметно отличаются по фракционному составу, содержанию светлых и темных фракций. В технических условиях на нефть и нефтепродукты нормируются:
Информация о точности определения фракционного состава различными методами содержится в [6,7]. Содержание воды При добыче и переработке нефть дважды смешивается с водой: при выходе с большой скоростью из скважины вместе с сопутствующей ей пластовой водой и в процессе обессоливания, т.е. промывки пресной водой для удаления хлористых солей. В нефти и нефтепродуктах вода может содержаться в виде простой взвеси, тогда она легко отстаивается при хранении, либо в виде стойкой эмульсии, тогда прибегают к особым приемам обезвоживания нефти. Образование устойчивых нефтяных эмульсий приводит к большим финансовым потерям. При небольшом содержании пластовой воды в нефти удорожается транспортировка ее по трубопроводам, потому что увеличивается вязкость нефти, образующей с водой эмульсию. После отделения воды от нефти в отстойниках и резервуарах часть нефти сбрасывается вместе с водой в виде эмульсии и загрязняет сточные воды. Часть эмульсии улавливается ловушками, собирается и накапливается в земляных амбарах и нефтяных прудах, где из эмульсии испаряются легкие фракции и она загрязняется механическими примесями. Такие нефти получили название “амбарные нефти”. Они высокообводненные и смолистые, с большим содержанием механических примесей, трудно обезвоживаются. Содержание воды в нефти является самой весомой поправкой при вычислении массы нетто нефти по массе брутто. Этот показатель качества, наряду с механическими примесями и хлористыми солями, входит в уравнение для определения массы балласта. Присутствуя в нефти, особенно с растворенными в ней хлористыми солями, вода осложняет ее переработку, вызывая коррозию аппаратуры. Имеющаяся в карбюраторном и дизельном топливе, вода снижает их теплотворную способность, засоряет и вызывает закупорку распыляющих форсунок. При уменьшении температуры кристаллики льда засоряют фильтры, что может служить причиной аварий при эксплуатации авиационных двигателей. Содержание воды в масле усиливает ее склонность к окислению, ускоряет процесс коррозии металлических деталей, соприкасающихся с маслом. Следовательно, вода оказывает негативное влияние как на процесс переработки нефти, так и на эксплуатационные свойства нефтепродуктов и количество ее должно строго нормироваться. Точность метода определения содержания воды по ГОСТ 2477-65: Сходимость – два результата определений, полученные одним исполнителем, признаются достоверными (с 95%-ной доверительной вероятностью), если расхождение между ними не превышает: 0.1 см3 – при объеме воды, меньшем или равным 1.0 см3; 0.1 см3 или 2% от стеднего значения объема (в зависимости от того, какая из этих величин больше) – при объеме воды более 1.0 см3. Воспроизводимость – два результата испытаний, полученные в двух разных лабораториях (с 95%-ной доверительной вероятностью), если расхождение между ними не превышает: 0.1 см3 – при объеме воды, меньшем или равным 1.0 см3; 0.2 см3 или 10% от среднего значения объема (в зависимости от того, какая из этих величин больше) – при объеме воды свыше 1.0 см3 до 10 см3; 5% от величины среднего результата – при объеме воды более 10 см3. Согласно ГОСТ 2477-65 массовая доля воды должна составлять не более чем 0.5%–1% в зависимости от степени подготовки нефтей. Содержание механических примесей Присутствие мехпримесей объясняется условиями залегания нефтей и способами их добычи. Механические примеси нефти состоят из взвешенных в ней высокодисперсных частиц песка, глины и других твердых пород, которые, адсорбируясь на поверхности глобул воды, способствуют стабилизации нефтяной эмульсии. При перегонке нефтей примеси могут частично оседать на стенках труб, аппаратуры и трубчатых печей, что приводит к ускорению процесса износа аппаратуры. В отстойниках, резервуарах и трубах при подогреве нефти часть высокодисперсных механических примесей коагулирует, выпадает на дно и отлагается на стенках, образуя слой грязи и твердого осадка. При этом уменьшается производительность аппаратов, а при отложении осадка на стенках труб уменьшается их теплопроводность. В ГОСТ 6370-83 приводятся следующие оценки достоверности результатов определения содержания механических примесей при доверительной вероятности 95%: Таблица № 4 Нормы точности определения массовой доли механических примесей по ГОСТ6370-83
Массовая доля механических примесей до 0.005% включительно оценивается как их отсутствие. ГОСТ 9965-76 также устанавливает массовую болю механических примесей в нефтях, которая может быть не более 0.05%. Содержание серы Сера и ее соединения являются постоянными составляющими частями сырой нефти. По химической природе - это соединения сульфидов, гомологов тиофана и тиофена. Кроме указанных соединений, в некоторых нефтях встречаются сероводород, меркаптаны и дисульфиды. Меркаптаны или тиоспирты – легколетучие жидкости с чрезвычайно отвратительным запахом; сульфиды или тиоэфиры – нейтральные вещества, нерастворяющиеся в воде, но растворяющиеся в нефтепродуктах; дисульфиды или полисульфиды – тяжелые жидкости с неприятным запахом, легко растворяющиеся в нефтепродуктах, и очень мало в воде; тиофен – жидкость, не растворяющаяся в воде. Соединения серы в нефтях, как правило, являются вредной примесью. Они токсичны, имеют неприятный запах, способствуют отложению смол, в соединениях с водой вызывают интенсивную коррозию металла. Особенно в этом отношении опасны сероводород и меркаптаны. Они обладают высокой коррозийной способностью, разрушают цветные металлы и железо. Поэтому их присутствие в товарной нефти не допустимо. Точность метода определения серы согласно ГОСТ 1437-75 выражается следующими показателями: cходимость – результаты определения, полученные последовательно одним лаборантом, признаются достоверными (при доверительной вероятности 95%), если расхождение менжду ними не превышает значений, указанных в таблице №5; воспроизводимость – результаты анализа, полученные в двух разных лабораториях, признаются достоверными (при доверительной вероятности 95%), если расхождение между ними не превышает значений, указанных в таблице №. 5. Таблица № 5 Сходимость и воспроизводимость метода определения серы по ГОСТ 1437-75
|