Размещение скважин
Законтурное заводнение. Воздействие на пласт в этом случае осуществляется через систему нагнетательных скважин, расположенных за внешним контуром нефтеносности. Линия нагнетательных скважин располагается примерно в 300—800 м от контура нефтеносности для создания более равномерного воздействия на него, предупреждения образования языков обводнения и локальных прорывов воды в эксплуатационные скважины. Законтурное заводнение целесообразно: при хорошей гидродинамической связи нефтеносного пласта с областью размещения нагнетательных скважин; при сравнительно малых размерах залежи нефти, когда отношение площади залежи к периметру контура нефтеносности составляет 1,5—1,75 км (хотя известны случаи разработки месторождений при иных соотношениях этих величин); при однородном пласте с хорошими коллекторскими свойствами как по толщине пласта, так и по площади. В этих условиях система законтурного заводнения позволяет наиболее полно выработать запасы и вытеснить нефть к центральной возвышенной части пласта, к так называемому стягивающему ряду добывающих скважин или к одной скважине. Законтурное заводнение имеет и недостатки. К их числу можно отнести следующие: повышенный расход энергии (дополнительные затраты мощностей насосных установок) на извлечение нефти, так как нагнетаемой воде приходится преодолевать фильтрационное сопротивление зоны пласта между контуром нефтеносности и линией нагнетательных скважин; замедленное воздействие на залежь из-за удаленности линии нагнетания; повышенный расход воды вследствие ее оттока во внешнюю область пласта за пределы линии нагнетания. Приконтурное заводнение. Ускорения воздействия на залежь можно достигнуть размещением нагнетательных скважин в непосредственной близости от контура нефтеносности или даже между внешним и внутренним контурами нефтеносности. Приконтурное заводнение применяется: при ухудшенной гидродинамической связи пласта с внешней областью; при сравнительно малых размерах залежи (см. законтурное заводнение); для интенсификации процесса эксплуатации, так как фильтрационные сопротивления между линиями нагнетания и отбора уменьшаются за счет их сближения. Однако вероятность образования языков обводнения и прорыва воды к отдельным скважинам эксплуатационных рядов увеличивается. С этим связаны некоторые возможные потерн нефти вследствие образования целиков между нагнетательными скважинами. Нефть из этих целиков может быть вытеснена только при очень тщательном регулировании процесса выработки, включая бурение дополнительных скважин. С энергетической точки зрения приконтурное заводнение более экономично, хотя при хорошей 'Гидропроводности внешней области потери нагнетаемой воды неизбежны. Внутриконтурное заводнение. Воздействие на пласт в этом случае осуществляется через систему нагнетательных скважин, расположенных по той или иной схеме внутри контура нефтеносности. Это более интенсивная система воздействия на залежь нефти, позволяющая сократить сроки выработки запасов и быстро наращивать добычу нефти. Различают несколько разновидностей внутриконтурного заводнения: разрезание залежи линиями нагнетательных скважин на полосы, кольца, создание центрального разрезающего ряда с несколькими поперечными рядами и в сочетании с приконтурным заводнением. Выбор схемы расположения нагнетательных скважин определяется конкретными геологическими условиями, экономически целесообразными сроками выработки запасов и величиной необходимых капвложений. Как правило, линии нагнетательных скважин располагают в зонах пласта с улучшенными коллекторскими свойствами и перпендикулярно к доминирующему простиранию линз и проницаемых песчаников, что позволяет устранить или уменьшить блокировку нагнетаемой воды и повысить охват пласта воздействием. Законтурное заводнение при наличии внутриконтурного должно предотвратить вытеснение нефти во внешнюю — законтурную область, а также интенсифицировать процесс. С энергетической точки зрения использование внутриконтурного заводнения более эффективно, чем законтурного и приконтурного, так как почти вся нагнетаемая вода используется в этом случае для вытеснения нефти по обе стороны разрезающего ряда. При внутриконтурном заводнении скважины разрезающих рядов эксплуатируются на нефти «через одну» для формирования фронта вытеснения, т. е. полосы водонасыщенной части пласта. Перечисленные системы заводнения, как правило, применяются на больших оконтуренных месторождениях с установленными границами и достаточно достоверными данными о характеристиках пласта. Блочное заводнение целесообразно на больших неоконтуренных месторождениях, когда по данным разведочных скважин очевидна промышленная нефтеносность в районе их расположения. В этом случае до окончательной разведки месторождения и определения контуров нефтеносности возможен ускоренный ввод объекта в эксплуатацию путем разрезания рядами нагнетательных скважин месторождения на отдельные блоки с самостоятельными сетками эксплуатационных скважин. Тогда внутри каждого блока бурят добывающие скважины в виде рядов, число и плотность которых на площади блока определяют гидродинамическими и технико-экономическими расчетами. При окончательной разведке и оконтуривании месторождения блоки, введенные в эксплуатацию раньше, технологически вписываются в общую схему разработки и составляют с ней органически целое. Очаговое заводнение используют в сочетании с любой другой системой заводнения для улучшения охвата пласта вытеснением, а также для выработки запасов из отдельных линз или участков пласта (застойных зон), на которые не распространяется влияние закачки от ближайших нагнетательных рядов. Как правило, при очаговом заводнении используют под нагнетание одну из добывающих скважин, расположенную рационально по отношению к окружающим добывающим скважинам и в зоне пласта с повышенной проницаемостью. Однако для очагового заводнения возможно бурение специальной скважины или даже группы скважин для увеличения охвата воздействием большего объема нефтенасыщенной части пласта или его слабопроницаемых зон. При достаточно детальной геологической изученности объекта разработки очаговое заводнение может применяться и как самостоятельное на всех этапах разработки и доразработки месторождения и в известном смысле является средством регулирования процесса вытеснения. Избирательную систему заводнения применяют, как и очаговую, при выработке запасов нефти из сильно неоднородных прерывистых как по простиранию, так и по толщине коллекторов. При этой системе точки бурения нагнетательных скважин определяют с учетом детального изучения геологических условий распространения продуктивного пласта, его связей с забоями ближайших добывающих скважин и таким образом, чтобы обеспечить максимально возможную интенсивность вытеснения нефти водой и свести до минимума влияние неоднородности и линзовидности пласта на полноту выработки и конечный коэффициент нефтеотдачи. Вследствие этого нагнетательные скважины оказываются расположенными на площади хаотично, отражая естественную неоднородность коллектора. Это осложняет систему водоснабжения нагнетательных скважин. На первых этапах разработки, когда геологическая информация ограничена или просто недостаточна, эта система не может быть применена. Она эффективна лишь на последующих этапах, когда выявляются детали строения пласта и результаты влияния на скважины закачки основной системы заводнения. Площадное заводнение — наиболее интенсивная система воздействия на пласт, обеспечивающая самые высокие темпы разработки месторождений. Добывающие и нагнетательные скважины при этой системе располагаются правильными геометрическими блоками в виде пяти-, семи- или девятиточечных сеток, в которых нагнетательные и добывающие скважины чередуются (рис. 3.1). При разбуривании площади по таким равномерным сеткам скважин оказывается, что при пятиточечной схеме на каждую нагнетательную скважину приходится одна добывающая, при семиточечной схеме две добывающие, а при девятиточечной три добывающие скважины. Учитывая, что нагнетательные скважины не дают продукцию, становится очевидным, что девятиточечная схема экономически выгоднее, однако интенсивность воздействия на залежь при этом меньше и вероятность существования целиков нефти при прорыве воды в добывающие скважины больше. Исторически сложилось так, что площадное заводнение использовали на последних стадиях разработки как вторичные методы добычи нефти. Однако система площадного заводнения имеет самостоятельное значение, может эффективно использоваться на ранних этапах разработки при хорошей изученности пласта. В заключение необходимо заметить, что перечисленные схемы размещения скважин могут применяться не только при закачке воды, но и при закачке газа или при проталкивании газом или водой различных растворителей в виде оторочек. Однако масштабы применения других методов воздействия, по сравнению с закачкой воды, настолько малы, что приходится говорить главным образом о размещении скважин при заводнении. 3.2.3. Основные характеристики поддержания пластового давления закачкой воды Техника и технология ППД закачкой воды связана с некоторыми понятиями и определениями, которые характеризуют процесс, его масштабы, степень компенсации отборов закачкой, сроки выработки запасов, число нагнетательных и добывающих скважин и др. К числу таких характеристик относится количество нагнетаемой воды. При искусственном водонапорном режиме, когда отбор нефти происходит при давлении в пласте выше давления насыщения, объем отбираемой жидкости, приведенный к пластовым условиям, должен равняться объему нагнетаемой жидкости, также приведенной к пластовым условиям, т. е. к пластовой температуре и давлению. Поскольку в этих условиях пластовая продукция состоит только из нефти и воды, а газ находится в растворенном состоянии, то можно написать следующее уравнение баланса расходов жидкостей, приведенных к пластовым условиям: (3.1.) Q наг — объемный расход нагнетаемой воды при стандартных условиях (например, м3/г); b в— объемный коэффициент нагнетаемой воды, учитывающий увеличение объема воды при нагре вании до пластовой температуры и уменьшение ее объема при сжатии до пластового давления. (Для обычных пластовых температур и давлений b в ≈ l,01); Qн — объемная добыча нефти (суммарный дебит) при стандартных условиях (дебит товарной нефти); b н - объемный коэффициент нефти, учитывающий ее расширение за счет растворения газа, повышения температуры и незначительное сжатие от давления. (Для каждого конкретного пласта b нопределяется экспериментально на установках pVT или приближенно рассчитывается по статистическим формулам. Обычно b н = 1,05—1,30, но иногда достигает величины 2,5 для нефтей грозненских месторождений верхнего мела); Qв - объемная добыча извлекаемой из пласта воды, измеренная при стандартных условиях; b′ в— объемный коэффициент извлекаемой минерализованной воды, который может отличаться от объемного коэффициента для пресной воды; Q yт — объемный расход воды, уходящей во внешнюю область (утечки); k — коэффициент, учитывающий потери воды, при периодической работе нагнетательных скважин на самоизлив, при порывах водоводов и по другим технологическим причинам. Обычно коэффициент k= 1,1—1,15. Из уравнения (3.1.) находят расход нагнетаемой воды Qнаг Очевидно, число нагнетательных скважин п наг,их средний дебит q наги расход нагнетаемой воды Qнаг связаны соотношением (3.2.) Если по результатам опытной эксплуатации нагнетательных скважин или по результатам расчета известен их дебит q наг,то из (3.2) определяют необходимое число нагнетательных скважин п наг. Если п наг предопределено схемой размещения скважин, то из (3.2) определяют средний дебит нагнетательной скважины q наг, который зависит от гидропроводности пласта в районе нагнетательной скважины и от репрессии, т. е. от величины давления нагнетания воды. Дебит нагнетательной скважины находят гидродинамическими расчетами всей системы добывающих и нагнетательных скважин или приближенно по формуле радиального притока, преобразованной для репрессии. Давление нагнетания и дебиты должны находиться в технически осуществимых пределах и не должны превышать возможностей технологического оборудования. Некоторое регулирование этих величин возможно воздействием на призабойную зону нагнетательных скважин для улучшения их поглотительной способности (кислотные обработки, гидроразрывы и др.). Для оценки степени компенсации отборов жидкостей из пласта закачкой вводится понятие коэффициента компенсации. Коэффициент текущей компенсации (3.3.) — отношение дебита нагнетаемой воды к дебиту отбираемых жидкостей, приведенных к пластовым условиям за единицу времени (год, месяц, сутки и т. д.). Этот коэффициент показывает, насколько скомпенсирован отбор закачкой в данный момент времени. Если mт<1, закачка отстает от отбора и следует ожидать падения среднего пластового давления. Если mт>1, закачка превышает отбор и давление в пласте должно расти. При mт=1 должна наблюдаться стабилизация текущего пластового давления на существующем уровне, независимо, каким он был в начале разработки.
Коэффициент накопленной компенсации (3.4)
Числитель в (3.4) — суммарное количество закачанной в пласт воды от начала закачки до данного момента времени t. Знаменатель — суммарное количество отобранной из пласта нефти и воды, приведенное к пластовым условиям, а также суммарные утечки за время нагнетания в течение всей эксплуатации залежи, включая отбор жидкости разведочными скважинами. При этом, если mн<1, текущее среднее пластовое давление меньше первоначального, так как закачка не скомпенсировала суммарный отбор. Если mн=1, среднее пластовое давление восстанавливается до начального пластового давления, так как закачка полностью компенсирует суммарный отбор жидкостей. Если mн>1, текущее среднее пластовое давление превышает первоначальное, так как закачано в пласт жидкости больше, чем отобрано. Продолжительность выработки запасов части пласта или всего объекта является важнейшей характеристикой процесса ППД. Рассмотрим в качестве примера участок пласта, подвергнутый законтурному заводнению и дренируемый тремя рядами добывающих скважин (рис. 3.2). Извлекаемые запасы нефти в зоне Амежду контуром нефтеносности и внешним рядом добывающих скважин будут равны (3.5) где FA — площадь нефтенасыщенной части пласта в пределах зоны А; hА — нефтенасыщенная толщина пласта; тА — средняя пористость зоны А; α — средний коэффициент нефтенасыщенности; ηк — ожидаемый конечный коэффициент нефтеотдачи. Эти запасы извлекаются добывающими скважинами первого, второго и третьего рядов. Суммарный дебит каждого добывающего ряда может во времени измениться в результате замещения нефти водой и изменения фильтрационных сопротивлений. Поэтому обозначим суммарный дебит всех добывающих рядов Q (t). Очевидно, … (3.6.) где q 1(t); q 2(t); q 3(t); — суммарные дебиты первого, второго и третьего рядов скважин. Среднее интегральное значение суммарного дебита всех рядов в интервале времени от 0 до t 1равно (3.7.) Тогда продолжительность первого этапа разработки, т. е. отбора запасов, из зоны А будет в общем виде равна (3.8.) Поскольку величина t 1неизвестна и она входит в правую часть равенства при определении среднеинтегрального дебита, то решение (3.8.) может быть получено с любой заданной точностью методом последовательных приближений. Продолжительность выработки запасов из зоны пласта Б между первым и вторым добывающими рядами можно определить по аналогии с (3.8): (3.9) где (3.10.) Так как к концу периода t 1 скважины первого добывающего ряда практически перестанут давать нефть, поэтому q 1=0. За нуль отсчета для второго периода принимается конец первого t 1. Аналогично определяется продолжительность последующих этапов разработки. Общая продолжительность разработки (3.11) Если дебиты рядов во времени не изменяются, то и продолжительность первого периода t 1 будет (3.12) Аналогично для других периодов. При учете неоднородности пласт иногда рассматривают как пакет прослоев, имеющих различную проницаемость и толщину в соответствии с распределением этих параметров в реальном пласте. В этом случае расчеты вытеснения, обводнения и продолжительности этапов разработки сильно осложняются, хотя в основе по отношению к каждому прослою остаются такими же, как было изложено выше. В технологии добычи нефти часто пользуются такими понятиями, как «давление на линии нагнетания» и «давление на линии отбора». Введение этих понятий упрощает физическую картину фильтрации жидкости от линии расположения нагнетательных скважин к рядам добывающих скважин, а также позволяет однозначно характеризовать депрессию обусловливающую приток жидкости к линиям отбора. Давление на линии нагнетания— это среднеинтегральное давление в пласте вдоль линии нагнетательных скважин. Вокруг нагнетательных скважин образуются репресснонные воронки, обращенные вверх с наибольшим давлением (вершина воронки) на забоях нагнетательных скважин (рис. 3.18). На рисунке ординаты заштрихованной части эпюры — абсолютные величины давлений в пласте, изменяющиеся вдоль S. Средняя ордината, т. е. высота прямоугольника длиной S и площадью S, — среднеинтегральное давление. По определению (3.13) или (3.14) где F —заштрихованная площадь эпюры давлений. Забойные давления нагнетательных скважин могут быть различны. Закон распределения давления вокруг забоя скважин близок к логарифмическому. Используя формулу для распределения давления при радиальном течении, можно построить кривые распределения давления между нагнетательными скважинами. Таким образом, по эпюре распределения давления вдоль линии нагнетания в реальном конкретном случае может быть определена площадь эпюры F, а по формуле (3.14) найдено давление на линии нагнетания. Существуют весьма простые расчетные методы определения давления на линии нагнетания, однако эти методы справедливы только при одинаковых забойных давлениях во всех нагнетательных скважинах, равных расстояниях между скважинами и однородном пласте.
Расчетная формула имеет вид (3.15) где р н — давление на забоях нагнетательных скважин (во всех скважинах одинаковое); Q — суммарный дебит нагнетательного ряда; —внутреннее фильтрационное сопротивление нагнетательного ряда. Здесь µ — вязкость воды; k — проницаемость; h — толщина пласта; п— число скважин в ряду; σ — половина расстояния между нагнетательными скважинами; rпр — приведенный радиус нагнетательной скважины. Давление на линии отбора определяется аналогично, т. е. как среднеинтегральное давление вдоль линии добывающих скважин. В добывающих скважинах депрессионная воронка обращена вершиной вниз (рис. 3.19). Давление на линии отбора равно (3.16) или где F— площадь заштрихованной эпюры. При аналитических расчетах где рс — давление на забоях добывающих скважин данного ряда (одинаковые во всем ряду); Q —дебит добывающих скважин данного ряда, расположенных в пределах длины S. Среднее давление на линии нагнетания меньше забойных давлений в нагнетательных скважинах , а среднее давление на линии отбора больше забойных давлений в добывающих скважинах . Величина , называется депрессией между линией нагнетания и линией отбора. От величины этой депрессии зависит дебит добывающих рядов скважин, который увеличивается с ростом Δ р. Увеличение депрессии может быть достигнуто как за счет увеличения давления на линии нагнетания ,так и за счет снижения давления на линии отбора . 3.2.4. Водоснабжение систем ППД Основное назначение системы водоснабжения при поддержании пластового давления — добыть нужное количество воды, пригодной для закачки в пласт, распределить ее между нагнетательными скважинами и закачать в пласт. Конкретный выбор системы водоснабжения зависит от того, на какой стадии разработки находится данное месторождение. В настоящее время ППД стремятся осуществить с самого начала разработки месторождения. В этом случае необходимо большое количество (практически 100 %) пресной воды, так как добывающие скважины на этой стадии практически дают безводную продукцию. В дальнейшем скважины все больше обводняются, появляется во все возрастающих количествах попутная вода, которая должна быть утилизирована. В связи с этим системы водоснабжения должны видоизменяться и приспосабливаться к конкретным условиям разработки месторождения. Проектируемая система водоснабжения должна предусматривать рост обводненности продукции скважин и необходимость утилизации всех так называемых промысловых сточных вод, включая ливневые, попутные, воды установок по подготовке нефти и др. Для соблюдения мер по охране природы и окружающей среды система водоснабжения в любом случае должна предусматривать 100 %-ную утилизацию сточных вод и работу всей системы ППД по замкнутому технологическому циклу. Это усложняет и несколько удорожает систему водоснабжения, так как возникает необходимость специальной подготовки сточных вод, очистки их от нефтепродуктов и взвеси, борьбы с возрастающей коррозией технологического оборудования и водоводов. Однако сточные воды, как правило, содержащие ПАВы, вводимые на установках по обезвоживанию и обессоливанию нефти, обладают улучшенными отмывающими и нефтевытесняющими способностями, что должно привести к увеличению нефтеотдачи пласта. Конкретный выбор системы водоснабжения зависит от источников воды для закачки в пласт, которыми могут быть: открытые водоемы (рек, озер, морей), грунтовые, к которым относятся подрусловые воды; водоносные горизонты данного месторождения: сточные воды, состоящие из смеси добытой вместе с нефтью пластовой воды, воды отстойных резервуарных парков, установок по подготовке нефти, ливневые воды промысловых объектов. Сточные воды загрязнены нефтепродуктами и требуют специальной очистки. Используемая для ППД вода не должна вызывать образование нерастворимых соединений при контакте с пластовой водой, что может привести к закупорке пор, или, как говорят, должна обладать химической совместимостью с пластовой. Качество воды оценивают в первую очередь следующими параметрами: количеством механических примесей (КВЧ — количество взвешенных частиц), нефтепродуктов, железа и его соединений, дающих при окислении кислородом нерастворимые осадки, закупоривающие поры пласта, сероводорода (HUS), способствующего коррозии водоводов и оборудования, микроорганизмов, а также солевым составом воды и ее плотностью. Практика показала, что в большинстве случаев можно исключить специальную химическую подготовку воды и не предъявлять жесткие требования к КВЧ, а в ряде случаев в десятки раз увеличить допустимое КВЧ без заметного уменьшения поглотительной способности скважин. Например, для высокопроницаемых пластов Ромашкинского месторождения была доказана возможность нагнетания воды с содержанием до 30 мг/л нефти и до 40—50 мг/л твердых частиц размером 5—10 мкм. Однако опыт показал, что нормирование качества воды для нагнетания в пласт нецелесообразно, так как пористость, проницаемость и трещиноватость пластов могут в широком диапазоне изменять требования к воде и к содержанию КВЧ в частности. Обычно при опытной закачке выявляются как пригодность имеющейся воды, так и возможная приемистость нагнетательных скважин и требуемое давление. Система водоснабжения состоит обычно из нескольких достаточно самостоятельных звеньев или элементов, к которым относятся водозаборные устройства, напорные станции первого подъема, станция водоподготовкн (при необходимости), напорная станция второго подъема, нагнетающая очищенную воду в разводящий коллектор и напорные станции третьего подъема или так называемые кустовые насосные станции (КНС), закачивающие воду непосредственно в нагнетательные скважины. Между отдельными звеньями системы водоснабжения создаются промежуточные буферные емкости для запаса воды, обеспечивающие непрерывность работы системы при кратковременных изменениях пропускной способности отдельных элементов в результате остановок по технологическим причинам или при авариях: порывах водоводов, остановке скважин. Такая система водоснабжения — типичная для восточных районов европейской части РФ и некоторых других районов— показана на рис. 3.20. При использовании сточных вод необходимое количество пресных вод (или морских) сокращается. Это приводит к уменьшению мощности водозаборных сооружений, станции первого подъема, а также буферных емкостей перед станцией водоподготовкн. Давление, развиваемое насосами (как правило, центробежными) станции первого подъема, обычно невелики и зависят в известной мере от рельефа местности, удаления станции водоподготовки и расхода жидкости. Как правило, оно не превышает 1,0 МПа. Давление развиваемое насосами станции второго подъема, обычно больше и обусловлено необходимостью создания подпора на приеме насосов высокого давления самых удаленных станций третьего подъема (КНС). Давление подпора иногда достигает 3,0 МПа. Разводящий водовод, питающий КНС, иногда выполняется в виде кольцевого водовода, замыкающего все КНС в единое кольцо, если они размещаются по периметру промысловой площади. Кольцевая схема обеспечивает непрерывность питания всех КНС при порыве водовода практически в любом месте. Совершенно новые технические решения системы водоснабжения были найдены для условий Западной Сибири, Тюменской области и некоторых других районов. Мощная и широко распространенная пластовая водонапорная система, залегающая на глубинах от 900 до 1100 м, в этих районах позволила решить проблему водоснабжения проще и экономически дешевле, использовать для ППД подземные воды мощных водонапорных комплексов апт-сеноманских н альб-сеноманских отложений. Дебиты водяных скважин, пробуренных на эти пласты, достигают 3000-4000 м3/сут при депрессиях, измеряемых несколькими метрами водяного столба. Сущность новых технических решений заключалась в устранении ряда промежуточных элементов типовой схемы, в совмещении нагнетательных скважин с водозаборными и создании КНС непосредственно в водозаборных скважинах. В принципе эти схемы не являются оригинальными, так как на ряде месторождений межпластовый переток воды из водоносных пластов, залегающих выше или ниже нефтеносного, был осуществлен как в условиях естественного, так и в условиях принудительного перетока. Однако масштабы применения этих схем и широкое использование новых технических средств для их осуществления на месторождениях Тюменской области являются исключительно большими. Необходимо отметить, что пластовые высоконапорные воды, как правило, достаточно чисты, не нуждаются в особой подготовке и могут непосредственно закачиваться в нагнетательные скважины по герметичным системам без контакта с воздухом. Это существенно упрощает водоснабжение по крайней мере на начальных этапах разработки, когда попутной воды нет или ее очень мало. На последующих этапах разработки, когда возникает необходимость утилизации сточных вод, их подготовки и очистки от нефти и подавления коррозионной активности, система водоснабжения с использованием вод глубинных пластов будет осложнена новыми элементами и станет похожей на типовую схему.
|