Методика изучения сложения и вычитания чисел в пределах 10
Действия сложения и вычитания изучаются параллельно. Они вводятся после изучения числа 2. Школьники знакомятся со знаками «+», «-», «=». Задачи: - усвоение учащимися таблицы сложения и вычитания в пределах 10 (заучивание); - знакомство с компонентами и результатами сложения и вычитания, их последующее узнавание, показ и понимание их названий в речи учителя; - овладение учащимися вычислительными приемами; - формирование у школьников прочных вычислительных навыков; - закрепление и использование знаний состава чисел первого десятка; Изучение арифметических действий начинается с введения сложения на основе предметно-практической деятельности, сопровождающейся счетом. Учитель производит ряд операций, комментируя свои действия и задавая вопросы учащимся. - Возьмем 1 сливу. Добавим к ней еще 1 сливу. Сколько всего слив у нас получилось? (2) - Как получилось 2 сливы? (К одной сливе прибавили еще одну сливу). - Верно: к 1 сливе прибавили еще 1 сливу, получилось 2 сливы. Это можно записать так: 1 + 1 = 2. Вместо слова прибавили записывается вот такой знак «+». Он называется «плюс». Слово «получится» тоже заменяется знаком – «=». Он называется «равно». Итак, мы записали пример, который читается так: «К одному прибавить один получится 2» или «Один плюс один равно двум». Аналогичную работу по составлению примера учащиеся проделывают за партами с различным раздаточным материалом. Они учатся записывать и читать пример. На этом же уроке школьники знакомятся с записью, решением и чтением примеров на вычитание: 2 – 1 = 1. «От двух отнять один получится (останется) один», «Два минус один равно один». После знакомства с числом 3 школьники аналогично вышеописанному учатся решать примеры: 2 + 1, 1 + 2, 3 – 1, 3 – 2. Они усваивают, что когда прибавляют, то становится больше, а когда вычитают – меньше, чем было. После изучения числа 3 на основе предметно-практической деятельности вводится переместительное свойство сложения: «2 +1 = 3 и 1 + 2 = 3». Первоначально дети учатся отыскивать результат сложения и вычитания путем пересчитывания. Например: 4 – 2. Взяли 4 предмета, убрали 2, а результат пересчитали. Затем школьники знакомятся с приемом присчитывания и отсчитывания, основанном на знании свойств натурального ряда чисел. Для этого используется натуральный ряд чисел от 1 до изучаемого числа. Числа могут быть записаны или представлены при помощи табличек на наборном полотне. Пособия должны быть демонстрационными и индивидуальными. Например, требуется решить пример: 5 + 1. На числовом ряду отыскивается число 5. Необходимо найти число, большее на 1. Это следующее число – 6, значит 5 + 1 = 6. Аналогично решаются примеры на вычитание 1 из числа. Далее школьники учатся прибавлять по 2. Например: 5 + 2. Ученик ставит палец на число 5 в числовом ряду, прибавляет 1 (передвигает палец на одну цифру вправо), получает 6, прибавляет еще 1, получает 7. Прием присчитывания и отсчитывания нескольких единиц отрабатывается и на предметных множествах. Например: требуется сосчитать каштаны (в одной кучке 3 каштана, а в другой - 2 каштана). Учащиеся пересчитывают элементы первого множества (3 каштана), запоминают это число, затем к нему по одному присчитывают элементы второго множества, комментируя свои действия. Присчитав последний элемент, учащиеся называют результат – сумму. После овладения школьниками приемом присчитывания, учитель знакомит их с приемом отсчитывания. Он более труден для учащихся с нарушением интеллекта, поскольку основан на хорошем знании обратного счета, который, в свою очередь, затруднен у данной категории детей. Например: 6 – 2. На фланелеграф прикрепляются 6 клубничек. Нужно отнять 2 клубнички. Отсчитываем 1 клубничку, осталось 5 клубничек. Отсчитываем еще 1 клубничку, осталось 4 клубнички. Значит 6 – 2 = 4. Переход от предметных действий к отвлеченному счету невозможен без знания состава числа. Только в случае владения составом числа становится возможным выполнять действия сложения и вычитания без присчитывания и отсчитывания. Закрепление знаний состава чисел происходит в различных упражнениях. После знакомства с действиями сложения и вычитания школьники могут выполнять следующие упражнения: 5 = 1 +, 5 = + 3, 5 = + Прием, опирающийся на знание состава числа, используется при сложении и вычитании. Например, требуется решить пример: 6 + 3. Рассуждения ведутся следующим образом: - Из чисел 6 и 3 состоит число 9, значит 6 + 3 = 9. Пример на вычитание: 9 – 6: - Число 9 состоит из чисел 6 и 3. Если от 9 отнять 6, то останется 3, значит 9 – 6 = 3.
Целесообразно решать примеры-четверки: 2 + 4 = … 6 – 4 = … 4 + 2 = … 6 – 2 = … Такие примеры сравниваются, устанавливается их взаимосвязь, признаки сходства и различия. Сначала это демонстрируется при помощи предметов (красные и зеленые листья), а затем работа осуществляется без опоры на наглядность. Подобные задания имеют не только образовательное, но и коррекционно-развивающее значение. Школьники учатся анализировать, сравнивать, обобщать. При изучении сложения и вычитания необходимо использовать математический диктант. Учитель устно называет пример, учащиеся его записывают и решают. На начальном этапе следует осуществлять сначала действия с предметами, получать ответ, а затем записывать пример. Позже наглядная опора снимается. Еще один вариант: учитель выполняет действия с предметами. Ученики повторяют эти действия при помощи раздаточного материала или на наборном полотне, записывают пример и называют ответ. Крайне важно обратить внимание школьников на то, что складывать можно любые числа, а вычитать только из большего меньшее; что сумма всегда больше каждого из слагаемых (или равна ему), а разность (остаток) всегда меньше уменьшаемого (или равна ему). По мере овладения навыками сложения и вычитания чисел в пределах 10 учащимся предлагаются примеры с отсутствующими компонентами. Например: 5 + … = 7, 9 - … = 3,? + 4 = 8 и т.д. Школьникам предлагается составить примеры с данным ответом. Например: … + … = 5, … - … = 3.
|