Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методика изучения сложения и вычитания чисел в пределах 10





 

Действия сложения и вычитания изучаются параллельно. Они вводятся после изучения числа 2. Школьники знакомятся со знаками «+», «-», «=».

Задачи:

- усвоение учащимися таблицы сложения и вычитания в пределах 10 (заучивание);

- знакомство с компонентами и результатами сложения и вычитания, их последующее узнавание, показ и понимание их названий в речи учителя;

- овладение учащимися вычислительными приемами;

- формирование у школьников прочных вычислительных навыков;

- закрепление и использование знаний состава чисел первого десятка;

Изучение арифметических действий начинается с введения сложения на основе предметно-практической деятельности, сопровождающейся счетом. Учитель производит ряд операций, комментируя свои действия и задавая вопросы учащимся.

- Возьмем 1 сливу. Добавим к ней еще 1 сливу. Сколько всего слив у нас получилось? (2)

- Как получилось 2 сливы? (К одной сливе прибавили еще одну сливу).

- Верно: к 1 сливе прибавили еще 1 сливу, получилось 2 сливы. Это можно записать так: 1 + 1 = 2. Вместо слова прибавили записывается вот такой знак «+». Он называется «плюс». Слово «получится» тоже заменяется знаком – «=». Он называется «равно». Итак, мы записали пример, который читается так: «К одному прибавить один получится 2» или «Один плюс один равно двум».

Аналогичную работу по составлению примера учащиеся проделывают за партами с различным раздаточным материалом. Они учатся записывать и читать пример.

На этом же уроке школьники знакомятся с записью, решением и чтением примеров на вычитание: 2 – 1 = 1. «От двух отнять один получится (останется) один», «Два минус один равно один».

После знакомства с числом 3 школьники аналогично вышеописанному учатся решать примеры: 2 + 1, 1 + 2, 3 – 1, 3 – 2. Они усваивают, что когда прибавляют, то становится больше, а когда вычитают – меньше, чем было.

После изучения числа 3 на основе предметно-практической деятельности вводится переместительное свойство сложения: «2 +1 = 3 и 1 + 2 = 3».

Первоначально дети учатся отыскивать результат сложения и вычитания путем пересчитывания. Например: 4 – 2. Взяли 4 предмета, убрали 2, а результат пересчитали.

Затем школьники знакомятся с приемом присчитывания и отсчитывания, основанном на знании свойств натурального ряда чисел. Для этого используется натуральный ряд чисел от 1 до изучаемого числа. Числа могут быть записаны или представлены при помощи табличек на наборном полотне. Пособия должны быть демонстрационными и индивидуальными.

Например, требуется решить пример: 5 + 1. На числовом ряду отыскивается число 5. Необходимо найти число, большее на 1. Это следующее число – 6, значит 5 + 1 = 6. Аналогично решаются примеры на вычитание 1 из числа.

Далее школьники учатся прибавлять по 2. Например: 5 + 2. Ученик ставит палец на число 5 в числовом ряду, прибавляет 1 (передвигает палец на одну цифру вправо), получает 6, прибавляет еще 1, получает 7.

Прием присчитывания и отсчитывания нескольких единиц отрабатывается и на предметных множествах. Например: требуется сосчитать каштаны (в одной кучке 3 каштана, а в другой - 2 каштана). Учащиеся пересчитывают элементы первого множества (3 каштана), запоминают это число, затем к нему по одному присчитывают элементы второго множества, комментируя свои действия. Присчитав последний элемент, учащиеся называют результат – сумму.

После овладения школьниками приемом присчитывания, учитель знакомит их с приемом отсчитывания. Он более труден для учащихся с нарушением интеллекта, поскольку основан на хорошем знании обратного счета, который, в свою очередь, затруднен у данной категории детей.

Например: 6 – 2. На фланелеграф прикрепляются 6 клубничек. Нужно отнять 2 клубнички. Отсчитываем 1 клубничку, осталось 5 клубничек. Отсчитываем еще 1 клубничку, осталось 4 клубнички. Значит 6 – 2 = 4.

Переход от предметных действий к отвлеченному счету невозможен без знания состава числа. Только в случае владения составом числа становится возможным выполнять действия сложения и вычитания без присчитывания и отсчитывания. Закрепление знаний состава чисел происходит в различных упражнениях. После знакомства с действиями сложения и вычитания школьники могут выполнять следующие упражнения: 5 = 1 +, 5 = + 3, 5 = +

Прием, опирающийся на знание состава числа, используется при сложении и вычитании. Например, требуется решить пример: 6 + 3. Рассуждения ведутся следующим образом:

- Из чисел 6 и 3 состоит число 9, значит 6 + 3 = 9.

Пример на вычитание: 9 – 6:

- Число 9 состоит из чисел 6 и 3. Если от 9 отнять 6, то останется 3, значит 9 – 6 = 3.

 

Целесообразно решать примеры-четверки:

2 + 4 = … 6 – 4 = …

4 + 2 = … 6 – 2 = …

Такие примеры сравниваются, устанавливается их взаимосвязь, признаки сходства и различия. Сначала это демонстрируется при помощи предметов (красные и зеленые листья), а затем работа осуществляется без опоры на наглядность. Подобные задания имеют не только образовательное, но и коррекционно-развивающее значение. Школьники учатся анализировать, сравнивать, обобщать.

При изучении сложения и вычитания необходимо использовать математический диктант. Учитель устно называет пример, учащиеся его записывают и решают. На начальном этапе следует осуществлять сначала действия с предметами, получать ответ, а затем записывать пример. Позже наглядная опора снимается.

Еще один вариант: учитель выполняет действия с предметами. Ученики повторяют эти действия при помощи раздаточного материала или на наборном полотне, записывают пример и называют ответ.

Крайне важно обратить внимание школьников на то, что складывать можно любые числа, а вычитать только из большего меньшее; что сумма всегда больше каждого из слагаемых (или равна ему), а разность (остаток) всегда меньше уменьшаемого (или равна ему).

По мере овладения навыками сложения и вычитания чисел в пределах 10 учащимся предлагаются примеры с отсутствующими компонентами. Например: 5 + … = 7, 9 - … = 3,? + 4 = 8 и т.д.

Школьникам предлагается составить примеры с данным ответом. Например: … + … = 5, … - … = 3.

 







Дата добавления: 2015-08-30; просмотров: 12539. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия