Топология
Применяемые при построении ЛВС механизмы контроля потоков являются топологически зависимыми, что делает невозможным одновременное использование Ethernet IEEE 802.x, FDDI ANSI, Token Ring IEEE 802.6 и прочих в пределах единой среды распространения. Несмотря на тот факт, что Fibre Channel в какой-то мере может напоминать столь привычные нам ЛВС, его механизм контроля потоков никак не связан с топологией среды распространения и базируется на совершенно иных принципах. Каждый N_порт при подключении к решетке Fibre Channel проходит через процедуру регистрации (log-in) и получает информацию об адресном пространстве и возможностях всех остальных узлов, на основании чего становится ясно, с кем из них он сможет работать и на каких условиях. А так как механизм контроля потоков в Fibre Channel является прерогативой самой решетки, то для узла совершенно неважно, какая топология лежит в ее основе.
На рисунке 2.1 приведено соединение точка-точка.
Рисунок 2.1 - Соединение «точка-точка»
Самая простая схема, основанная на последовательном полнодуплексном соединении двух N_портов с взаимоприемлемыми параметрами физического соединения и одинаковыми классами сервиса. Один из узлов получает адрес 0, а другой – 1. В сущности, такая схема может рассматриваться как частный случай кольцевой топологии, где нет необходимости в разграничении доступа путем арбитража. В качестве типичного примера такого подключения можем привести наиболее часто встречающееся соединение сервера с внешним RAID массивом (массив из нескольких дисков, управляемых контроллером, взаимосвязанных скоростными каналами и воспринимаемых внешней системой как единое целое). Петля с арбитражным доступом (рисунок 2.2). Классическая схема подключения до 126 портов, с которой все и начиналось, если судить по аббревиатуре FC-AL (Fibre Channel Arbitrated Loop — кольцо волоконно-оптического канала с арбитражем). Любые два порта в кольце могут обмениваться данными посредством полнодуплексного соединения точно так же, как и в случае "точка-точка". При этом все остальные выполняют роль пассивных повторителей сигналов уровня FC-1 с минимальными задержками, в чем, пожалуй, заключается одно из основных преимуществ технологии FC-AL перед SSA (Serial Storage Architecture – это высокопроизводительный интерфейс для подключения периферии, обеспечивающий пропускную способность от 20MB/s до 80MB/s).
Рисунок 2.2 - Петля с арбитражным доступом
Дело в том, что адресация в SSA построена на знании количества промежуточных портов между отправителем и получателем, поэтому адресный заголовок кадра SSA содержит счетчик переходов (hop count). Каждый встречающийся на пути кадра порт уменьшает содержимое этого счетчика на единицу и после этого заново генерирует CRC (CRC - это число, предназначенное (обычно) для контроля целостности передачи или хранения информации), тем самым существенно увеличивая задержку передачи между портами. Для избежания этого нежелательного эффекта разработчики FC-AL предпочли использовать абсолютную адресацию, что в итоге позволило ретранслировать кадр в неизменном виде и с минимальной латентностью. Передаваемое с целью арбитража слово ARB не понимается и не используется обычными N_портами, поэтому при такой топологии дополнительные свойства узлов обозначаются, как NL_порт. Основным преимуществом петли с арбитражным доступом является низкая себестоимость в пересчете на количество подключенных устройств, поэтому наиболее часто она используется для объединения большого количества жестких дисков с дисковым контроллером. К сожалению, выход из строя любого NL_порта или соединительного кабеля размыкает петлю и делает ее неработоспособной, из-за чего в чистом виде такая схема сейчас уже не считается перспективной. Кроме того, добавление или удаление NL_порта вызывает достаточно длительный процесс инициализации LIP (Loop Initialization Process), который может измеряться десятками секунд при большом количестве подключенных узлов.
В настоящее время наибольшее распространение получила схема организации петли с помощью активных концентраторов (рисунок 2.3), которые умеют изолировать поврежденный NL_порт путем автоматического подключения внутреннего резервного пути.
Рисунок 2.3 - Использование концентратора в петле с арбитражным доступом
Еще одним веским доводом в пользу использования концентратора являются расширенные возможности управления и более удобная схема межпортовых соединений. Наиболее перспективная топология, позволяющая преодолеть все ограничения петли с арбитражным доступом и представить каждому N_порту выделенный канал FC-AL – это к оммутируемая решетка (рисунок 2.4). В основу решетки положен Fibre Channel коммутатор с F_портами (Fabric ports).
Рисунок 2.4 - Топология коммутируемой решетки
Примерно так же, как и в ЛВС, к портам коммутатора могут подключаться другие коммутаторы или концентраторы, в таком случае это будет называться соединением через E_порт или FL_порт соответственно.
|