Сеть FDDI.
Для каждого канала важны высокие рейтинги просмотров, т.к. от этого напрямую зависит жизнедеятельность канала. Соответственно, программа телеканала составляется профессионалами, с расчетом на определенную аудиторию. Телеканал СТБ является одним из ведущих на нашем телевидении. Как мы можем заметить, самый большой объем времени занимают развлекательные телепередачи и художественные фильмы. Новостные, познавательные и социально-политические программы находятся на одном уровне по количеству занятого эфирного времени. Меньше всего внимания уделено музыкальным и детским телепередачам, и вовсе не уделено внимание правовым программам. Можем сделать предположение, что канал делает упор на развлекательный сектор, т.к. только он может претендовать на уникальность. Т.е. канал стремится как можно больше транслировать собственноручно снятые передачи для того, чтобы создать свой имидж, чтобы иметь отличительные черты от других каналов. Учитывая тот фактор, что ТВ смотрят в основном с целью отдыха и развлечения, было бы не логично перегружать канал тяжелыми, фактическими и документальными шоу. Поэтому на канале очень мало времени уделено остальным секторам ТВ. Что касается музыкальных телепередач, то сейчас, с появлением мощного конкурента в виде интернета, они просто не актуальны. Новости так же с трудом могут претендовать на уникальную и единственную информацию, т.к. все каналы их транслируют. Детским передачам отводится также мало времени опять же из-за того, что они не востребованы. Доступ к интернету упростил задачу в плане детского досуга. Можно сделать вывод, что телеканалы стараются давать народу ту информацию, которую не может предоставить интернет. И до тех пор, пока это будет реально, интернет не вытеснит телевиденье. Сеть FDDI Сеть FDDI (от английского Fiber Distributed Data Interface, оптоволоконный распределенный интерфейс данных) – это одна из новейших разработок стандартов локальных сетей. Стандарт FDDI был предложен Американским национальным институтом стандартов ANSI (спецификация ANSI X3T9.5). Затем был принят стандарт ISO 9314, соответствующий спецификациям ANSI. Уровень стандартизации сети достаточно высок. В отличие от других стандартных локальных сетей, стандарт FDDI изначально ориентировался на высокую скорость передачи (100 Мбит/с) и на применение наиболее перспективного оптоволоконного кабеля. Поэтому в данном случае разработчики не были стеснены рамками старых стандартов, ориентировавшихся на низкие скорости и электрический кабель. Выбор оптоволокна в качестве среды передачи определил такие преимущества новой сети, как высокая помехозащищенность, максимальная секретность передачи информации и прекрасная гальваническая развязка абонентов. Высокая скорость передачи, которая в случае оптоволоконного кабеля достигается гораздо проще, позволяет решать многие задачи, недоступные менее скоростным сетям, например, передачу изображений в реальном масштабе времени. Кроме того, оптоволоконный кабель легко решает проблему передачи данных на расстояние нескольких километров без ретрансляции, что позволяет строить большие по размерам сети, охватывающие даже целые города и имеющие при этом все преимущества локальных сетей (в частности, низкий уровень ошибок). Все это определило популярность сети FDDI, хотя она распространена еще не так широко, как Ethernet и Token-Ring. За основу стандарта FDDI был взят метод маркерного доступа, предусмотренный международным стандартом IEEE 802.5 (Token-Ring). Несущественные отличия от этого стандарта определяются необходимостью обеспечить высокую скорость передачи информации на большие расстояния. Топология сети FDDI – это кольцо, наиболее подходящая топология для оптоволоконного кабеля. В сети применяется два разнонаправленных оптоволоконных кабеля, один из которых обычно находится в резерве, однако такое решение позволяет использовать и полнодуплексную передачу информации (одновременно в двух направлениях) с удвоенной эффективной скоростью в 200 Мбит/с (при этом каждый из двух каналов работает на скорости 100 Мбит/с). Применяется и звездно-кольцевая топология с концентраторами, включенными в кольцо (как в Token-Ring). Основные технические характеристики сети FDDI.
Стандарт FDDI имеет значительные преимущества по сравнению со всеми рассмотренными ранее сетями. Например, сеть Fast Ethernet, имеющая такую же пропускную способность 100 Мбит/с, не может сравниться с FDDI по допустимым размерам сети. К тому же маркерный метод доступа FDDI обеспечивает в отличие от CSMA/CD гарантированное время доступа и отсутствие конфликтов при любом уровне нагрузки. Ограничение на общую длину сети в 20 км связано не с затуханием сигналов в кабеле, а с необходимостью ограничения времени полного прохождения сигнала по кольцу для обеспечения предельно допустимого времени доступа. А вот максимальное расстояние между абонентами (2 км при многомодовом кабеле) определяется как раз затуханием сигналов в кабеле (оно не должно превышать 11 дБ). Предусмотрена также возможность применения одномодового кабеля, и в этом случае расстояние между абонентами может достигать 45 километров, а полная длина кольца – 200 километров. Имеется также реализация FDDI на электрическом кабеле (CDDI – Copper Distributed Data Interface или TPDDI – Twisted Pair Distributed Data Interface). При этом используется кабель категории 5 с разъемами RJ-45. Максимальное расстояние между абонентами в этом случае должно быть не более 100 метров. Стоимость оборудования сети на электрическом кабеле в несколько раз меньше. Но эта версия сети уже не имеет столь очевидных преимуществ перед конкурентами, как изначальная оптоволоконная FDDI. Электрические версии FDDI стандартизованы гораздо хуже оптоволоконных, поэтому совместимость оборудования разных производителей не гарантируется.
Для передачи данных в FDDI применяется уже упоминавшийся в первой главе код 4В/5В (см. табл. 8.1), специально разработанный для этого стандарта. Главный принцип кода – избежать длинных последовательностей нулей и единиц. Код 4В/5В обеспечивает скорость передачи 100 Мбит/с при пропускной способности кабеля 125 миллионов сигналов в секунду (или 125 МБод), а не 200 МБод, как в случае манчестерского кода. При этом каждым четырем битам передаваемой информации (каждому полубайту или нибблу) ставится в соответствие пять передаваемых по кабелю битов. Это позволяет приемнику восстанавливать синхронизацию приходящих данных один раз на четыре принятых бита. Таким образом, достигается компромисс между простейшим кодом NRZ и самосинхронизирующимся на каждом бите манчестерским кодом. Дополнительно сигналы кодируются кодом NRZI (в случае TPDDI) и MLT-3 (в случае FDDI). Стандарт FDDI для достижения высокой гибкости сети предусматривает включение в кольцо абонентов двух типов:
Кроме собственно абонентов (компьютеров, терминалов и т.д.) в сети используются связные концентраторы (Wiring Concentrators), включение которых позволяет собрать в одно место все точки подключения с целью контроля работы сети, диагностики неисправностей и упрощения реконфигурации. При применении кабелей разных типов (например, оптоволоконного кабеля и витой пары) концентратор выполняет также функцию преобразования электрических сигналов в оптические и наоборот. Концентраторы также бывают двойного подключения (DAC – Dual-Attachment Concentrator) и одинарного подключения (SAC – Single-Attachment Concentrator). Пример конфигурации сети FDDI представлен на рис. 8.1. Принцип объединения устройств сети иллюстрируется на рис. 8.2. FDDI определяет четыре типа портов абонентов (рис. 8.2):
Структура портов для абонентов DAS и SAS, а также концентратора DAC видна на рис. 8.2. Концентратор SAC имеет один порт S для включения в одинарное кольцо и несколько портов М для подключения абонентов SAS. Стандарт FDDI предусматривает также возможность реконфигурации сети с целью сохранения ее работоспособности в случае повреждения кабеля (рис. 8.3). В показанном на рисунке случае поврежденный участок кабеля исключается из кольца, но целостность сети при этом не нарушается вследствие перехода на одно кольцо вместо двух (то есть абоненты DAS начинают работать, как абоненты SAS). Это равносильно процедуре сворачивания кольца в сети Token-Ring. Кроме абонентов (станций) и концентраторов в сети FDDI применяются обходные коммутаторы (bypass switch). Обходные коммутаторы включаются между абонентом и кольцом и позволяют отключить абонента от кольца в случае его неисправности. Управляется обходной коммутатор электрическим сигналом от абонента. В зависимости от управляющего сигнала он или включает абонента в кольцо или же исключает его из кольца, замыкая его на самого себя (рис. 8.4). При использовании обходных коммутаторов необходимо учитывать дополнительные затухания, вносимые ими (около 2,5 дБ на один коммутатор). В отличие от метода доступа, предлагаемого стандартом IEEE 802.5, в FDDI применяется так называемая множественная передача маркера. Если в случае сети Token-Ring новый (свободный) маркер передается абонентом только после возвращения к нему его пакета, то в FDDI новый маркер передается абонентом сразу же после окончания передачи им пакета (подобно тому, как это делается при методе ETR в сети Token-Ring). Последовательность действий здесь следующая: 1. Абонент, желающий передавать, ждет маркера, который идет за каждым пакетом. 2. Когда маркер пришел, абонент удаляет его из сети и передает свой пакет. Таким образом, в сети может быть одновременно несколько пакетов, но только один маркер. 3. Сразу после передачи своего пакета абонент посылает новый маркер. 4. Абонент-получатель, которому адресован пакет, копирует его из сети и, сделав пометку в поле статуса пакета, отправляет его дальше по кольцу. 5. Получив обратно по кольцу свой пакет, абонент уничтожает его. В поле статуса пакета он имеет информацию о том, были ли ошибки, и получил ли пакет приемник. В сети FDDI не используется система приоритетов и резервирования, как в Token-Ring. Но предусмотрен механизм адаптивного планирования нагрузки. Каждый абонент ведет свой отсчет времени, сравнивая реальное время обращения маркера по кольцу (TRT – Token-Rotation Time) с заранее установленным контрольным (операционным) временем его прибытия (T_OPR). Если маркер возвращается раньше, чем установлено T_OPR, то делается вывод о том, что сеть загружена мало, и, следовательно, абонент может передавать всю информацию в асинхронном режиме, то есть независимо от других. Для этого абонент может использовать весь оставшийся временной интервал (T_OPR –TRT). Если же маркер возвращается позже, чем установлено T_OPR, то сеть загружена сильно, и абонент может передавать только самую важную информацию в течение того интервала времени, который отводится ему в синхронном режиме. Величина T_OPR выбирается на этапе инициализации сети всеми абонентами в процессе состязания. Такой механизм позволяет абонентам гибко реагировать на загрузку сети и автоматически поддерживать ее на оптимальном уровне. Для правильной работы сети задержка прохождения сигнала по кольцу должна быть ограничена. Так, в случае максимальной длины кольца 200 км и максимальном количестве абонентов 1000 полное время задержки не должно превышать 1,617 мс. Форматы маркера (рис. 8.5) и пакета (рис. 8.6) сети FDDI несколько отличаются от форматов, используемых в сети Token-Ring. Назначение полей:
Формат байта управления сети FDDI (рис. 8.7):
В заключение следует отметить, что несмотря на очевидные преимущества FDDI данная сеть не получила широкого распространения, что связано главным образом с высокой стоимостью ее аппаратуры (порядка нескольких сот и даже тысяч долларов). Основная область применения FDDI сейчас – это базовые, опорные (Backbone) сети, объединяющие несколько сетей. Применяется FDDI также для соединения мощных рабочих станций или серверов, требующих высокоскоростного обмена. Предполагается, что сеть Fast Ethernet может потеснить FDDI, однако преимущества оптоволоконного кабеля, маркерного метода управления и рекордный допустимый размер сети ставят в настоящее время FDDI вне конкуренции. А в тех случаях, когда стоимость аппаратуры имеет решающее значение, можно на некритичных участках применять версию FDDI на основе витой пары (TPDDI). К тому же стоимость аппаратуры FDDI может сильно уменьшится с ростом объема ее выпуска.
|