Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вероятность гипотез. Формулы Бейеса





Пусть событие А может наступить при условии появления одного из несовместных событий В1, В2,..., Вn, образующих полную группу. Поскольку заранее не известно, какое из этих событий наступит, их называют гипотезами. Вероятность появления события А определяется по формуле полной вероятности:

Р(А) = Р(В1B1(А)+Р(В2B2(А)+...+Р(ВnBn(А). (*)

Допустим, что произведено испытание, в результате которого появилось событие А. Поставим своей задачей определить, как изменились (в связи с тем, что событие А уже наступило) вероятности гипотез. Другими словами, будем искать условные вероятности

РA1), РA2),.... РAn).

Найдем сначала условную вероятность РA1). По теореме умножения имеем

Р(АВ1)=Р(А)РA1)=Р(В1)PB1(А).

Отсюда

.

Заменив здесь Р(А) по формуле (*), получим

.

Аналогично выводятся формулы, определяющие условные вероятности остальных гипотез, т. е. условная вероятность любой гипотезы Вi (i=1, 2,..., n) может быть вычислена по формуле

.

Полученные формулы называют формулами Бейеса (по имени английского математика, который их вывел; опубликованы в 1764 г.). Формулы. Бейеса позволяют переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А.

Пример. Детали, изготовляемые цехом завода, попадают для проверки их на стандартность к одному из двух контролеров. Вероятность того, что деталь попадает к первому контролеру, равна 0,6, а ко второму - 0,4. Вероятность того, что годная деталь будет признана стандартной первым контролером, равна 0,94, а вторым - 0,98. Годная деталь при проверке была признана стандартной. Найти вероятность того, что эту деталь проверил первый контролер.

Решение. Обозначим через А событие, состоящее в том, что годная деталь признана стандартной. Можно сделать два предположения:

1) деталь проверил первый контролер (гипотеза В1);

2) деталь проверил второй контролер (гипотеза В2). Искомую вероятность того, что деталь проверил первый контролер, найдем по формуле Бейеса:

.

По условию задачи имеем:

Р(В1)=0,6 (вероятность того, что деталь попадает к первому контролеру);

Р(В2) = 0,4 (вероятность того, что деталь попадет ко второму контролеру);

РВ1(A)=0,94 (вероятность того, что годная деталь будет признана первым контролером стандартной);

РВ2(A)=0,98 (вероятность того, что годная деталь будет признана вторым контролером стандартной). Искомая вероятность

PA(B1)=(0,6·0,94)/(0,6·0,944+0,4·0,98)≈0,59.

Как видно, до испытания вероятность гипотезы В1 равнялась 0,6, а после того, как стал известен результат испытания, вероятность этой гипотезы (точнее, условная вероятность) изменилась и стала равной 0,59. Таким образом, использование формулы Бейеса позволило переоценить вероятность рассматриваемой гипотезы.

Задание

Решить задачи 89, 90,91,92,93,94,95,98,99,104,105

 

 

 

Содержание отчета

5.1 Наименование и цель работы

5.2 Условия задач

5.3 Выполненное задание

 







Дата добавления: 2015-08-30; просмотров: 490. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия