Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение 2.5





Формирование знаний (machine learning) — процесс анализа данных и выявле­ния скрытых закономерностей с использованием специального математическо­го аппарата и программных средств.

Традиционно к задачам формирования знаний или машинного обучения относятся задачи прогнозирования, идентификации (синтеза) функций, расшифровки языков, индуктивного вывода и синтеза с дополнительной информацией [Епифанов, 1984]. В широком смысле к обучению по приме­рам можно отнести и методы обучения распознаванию образов [Аткинсон, 1989; Schwartz, 1988].

Для того чтобы эти методы стали элементами технологии интеллектуальных систем, необходимо решить ряд задач [Осипов, 1997]:

Ø обеспечить механизм сопряжения независимо созданных баз данных, имеющих различные схемы, с базами знаний интеллектуальных систем;

Ø установить соответствие между набором полей базы данных и множест­вом элементов декларативного компонента базы знаний;

Ø выполнить преобразование результата работы алгоритма обучения в спо­соб представления, поддерживаемый программными средствами интел­лектуальной системы.

Помимо перечисленных существуют также и другие стратегии получения знаний, например, в случае обучения на примерах (case-based reasoning), когда источник знаний — это множество примеров предметной области [Осипов, 1997; Попов, Фоминых, Кисель, 1996]. Обучение на основе при­меров (прецедентов) включает настройку алгоритма распознавания на зада­чу посредством предъявления примеров, классификация которых известна.

Обучение на примерах тесно связано с машинным обучением. Различие за­ключается в том, что результат обучения в рассматриваемом здесь случае должен быть интерпретирован в некоторой модели, в которой, возможно, уже содержатся факты и закономерности предметной области, и преобразо­ван в способ представления, который допускает использование результата обучения в базе знаний, для моделирования рассуждений, для работы меха­низма объяснения и т. д., т. е. делает результат обучения элементом соот­ветствующей технологии.

Например, в системе INDUCE [Коов и др., 1988] порождается непротиворечивое описание некоторого класса объектов по множествам примеров и контрпримеров данного класса. В качестве языка представления использу­ется язык переменно-значной логики первого порядка (вариант языка многозначной логики первого порядка).

В последнее время широкое распространение получили термины data mining и knowledge discovery, означающие, по сути, тот же процесс формирования знаний и поиск закономерностей, осуществляемый на больших выборках данных, обычно находящихся в хранилищах данных (data warehouse).

Таким образом, можно выделить три основных стратегии проведения ста­дии получения знаний при разработке ЭС (рис. 2.6):

Ø с использованием ЭВМ при наличии подходящего программного инст­рументария — приобретение знаний',

Ø с использованием программ обучения при наличии репрезентативной (т. е. достаточно представительной) выборки примеров принятия реше­ний в предметной области и соответствующих пакетов прикладных программ —- формирование знаний;

Ø без использования вычислительной техники путем непосредственного контакта инженера по знаниям и источника знаний (будь то эксперт, специальная литература или другие источники) — извлечение знаний.

 

Рис. 2.6. Стратегии получения знаний

Далее в этой главе подробно будут рассматриваться процессы извлечения знаний, т. к. на современном этапе разработки ЭС эти стратегии являются наиболее эффективными и перспективными. Формирование знаний, тяго­теющее в большей степени к области machine learning, т. е. индуктивному обучению, основываясь на хорошо исследованном аппарате распознавания образов [Гаек, Гавранек, 1983] и обнаружения сходства объектов [Гусакова, Финн, 1987], выходит за рамки данной книги. Также за рамками книги ос­тались вопросы приобретения знаний [Осипов, 1997] и формирования зна­ний из данных (data mining, knowledge discovery) и др.







Дата добавления: 2015-08-30; просмотров: 677. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия