Студопедия — ANALYSIS OF ENERGY CONSUMPTION OF DIFFERENT STEEL PRODUCTION TECHNOLOGICAL PROCESSES
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ANALYSIS OF ENERGY CONSUMPTION OF DIFFERENT STEEL PRODUCTION TECHNOLOGICAL PROCESSES






 

Purpose of the work: to analyze energy consumption of steel production methods, depending on type of technological process and composition of initial charging materials.

Theory. Metallurgy is one of the most energy-intensive processes. Therefore total expenses of energy and a degree of its consumption for a unit of production may be used as an index of the basic economic expenses for manufacturing cast iron, steel and other metals.

Total expenses of energy are the integrated parameter displaying energy expenses both in technological process of metal obtaining, and at all stages of manufacture previous to this technological process, including extraction (mining), processing and transportation of power resources (natural gas, coal, etc.) and raw materials (ore, fluxes, liquid cast iron, refractory materials, etc.).

The basic methods of steel production: in oxygen converters, in open-hearth and electric arc furnaces, - differ both in power consumption (i.e. on production expenses) and in quality of finished goods. At the same time even within the limits of one steel production method, change in structure of initial charge allows changing essentially both expenses for finished goods, and quality of produced steel. The opportunity to reveal the most modern and economically effective process to produce steel of necessary quality is offered in this laboratory work.

Oxygen - converter process is a method of steel melting from liquid steelmaking iron in a converter with the basic lining by blowing through the liquid of pure oxygen. Oxygen is submitted from above through water-cooled lance. This method has a number of advantages:

· High productivity(up to 400…500 ton per hour);

· Low capital expenses for construction of converter departments;

· Process is convenient for automation of melting.

It is possible to process liquid steelmaking-iron of any content in oxygen converters. Due to use of pure oxygen, heat of oxidation of carbon, silicon, manganese and phosphorus contained in cast iron is more than sufficient for heating of steel to the temperature necessary for passing of the basic physical and chemical melting processes. Surplus of heat allows to convert a significant amount of metal scrap (up to 25…30 % of weight of cast iron).

Low-carbon structural quality steels are normally produced in oxygen converters. Introduction of alloying elements during converter melting is hindered by an oxidizing atmosphere and, therefore, by rather fast oxidation of alloying elements in volume of liquid metal. Thus, the content of alloying elements in steels does not exceed 2…3%.

Increase up to 100 % of scrap share in converter charge has proved to be a perspective technological solution. Oxygen-converter process with the increased share of scrap in charge (so-called oxygen - fuel process) is carried out in converters with combined blasting. Intensive heating (and fusion if necessary) of solid metal charge is carried out due to natural gas being submitted into the unit through lateral torches. Gas combustion and partial reburning of carbon oxide in the converter also produce necessary additional amount of heat.

Open-hearth process is carried out on a hearth of a flame reverberatory furnace with regenerators. Charging materials (liquid iron, scrap, ore, ferroalloys, etc.) are loaded into the furnace and are melted gradually under the effect of flame created by burning fuel. Various additives are given into the furnace bath after fusion to receive metal of the necessary chemical composition and temperature.

The process is carried out during 5…8 hours. This time is sufficient to modify the chemical composition of melted steel. Therefore it is possible to produce steel of any chemical composition (including alloyed steels) in open-hearth furnaces. But productivity of furnaces attains 70…80 ton per hour that is lower (in 6…10 times) than productivity of oxygen converters. Their construction and operation require significant capital expenses. Therefore new open-hearth furnaces are not under construction now.

Pig-and-ore as well as scrap-and-ore processes are distinguished depending on a ratio of initial components in charge of the open-hearth furnace.

Pig-and-ore process is used when blast furnace, open-hearth and rolling shops are included into structure of a production plant. It allows delivering pig-iron (steelmaking-iron) to open-hearth shop in liquid state. Charging materials in cast-and-ore process consist of liquid iron (50…70 %) and waste products of own metallurgical manufacture as well as purchased scrap (the rest). Carbon content in metal is adjusted by variation of iron ore quantity in the charge. Normally iron ore consumption constitutes 12…16 % of metal charge weight. With increase in ore content in the charge the carbon content in melt decreases. Open-hearth cast-and-ore process is carried out in big furnaces (up to 300 tons) with application of oxygen for intensification of physical and chemical processes of melting.

Scrap prevails in structure of charge for scrap-and-ore process. The small amount of cast iron is given into charge in solid state. The ratio between scrap and cast iron quantities charged into the furnace is determined by scrap and cast iron composition, oxidizing ability of the furnace and grade of steel to be melted. Carbon content in steel depends on quantity of cast iron in charge. If there is no cast iron in charge, or charge contains insufficient amount of cast iron, the deficiency of carbon is filled up by carburizers (coal, coke, electrode breakage, etc.). Scrap-and-ore process is realized in furnaces of the middle tonnage (150…200 ton) without application of oxygen.

In electric-arc furnaces a source of heat is the arc burning between electrodes and metal charge or between electrodes. By adjusting electric parameters of an arc, it is possible to influence carrying out of steel-smelting process essentially. Metal scrap, including alloyed waste products, is used as charging materials. If it is necessary to oxidize excessive carbon and other impurities, iron ore or oxygen are submitted into a furnace. At the same time it is possible to create an inert or reduction atmosphere in the furnace for melting of high-alloy steels. Productivity of electric arc furnaces ranges from 80 to 120 ton per hour.

In electric furnaces it is possible to produce steel and alloys of any composition with the minimum content of harmful impurities, nonmetallic inclusions. Therefore high-alloy, tool, corrosion-resistant, heat-resistant and high-temperature steels as well as alloys of crucial assignment are smelted only in electric furnaces.

Now in steel manufacturing in connection with wide use of insufficiently well-sorted scrap there is a problem of contamination of metal by undesirable alloying elements (in particular copper). Up to 80 % of metallized pellets, obtained by direct reduction of iron ore, are included in charging materials of electric arc furnaces for high purity steel production.

Seven technological processes are analyzed within the framework of the present laboratory work:

1. Oxygen-converter process with 100% of liquid steelmaking iron as charging materials;

2. Oxygen-fuel process, in which charging materials consist of 50% of liquid iron and 50% of solid steel and cast iron scrap;

3. Oxygen-fuel process, in which all charging materials consist of solid scrap;

4. Open-hearth cast-and-ore process with metal scrap share of 45%;

5. Open-hearth scrap-and-ore process, in which 100% of scrap is used;

6. Electric-arc process in which 100% of scrap is used;

7. Electric-arc process with 25% of scrap and 75% of metallized pellets in charge.

 

Charge composition, consumption of electric energy and other auxiliary materials for each technological process, as well as specific energy consumption for production of each charging component are given in the table 2.2.

 

 

2.2. Charge composition for production of 1 ton of carbon steel and specific energy consumption for charge components

Components of charge and materials to be consumed Specific energy consumption Ei, MJ per unit Consumption of materials, mi, units, depending on variant of technological process
             
Cast iron, kg 23.8      
Metal scrap, kg 0.2            
Metallized pellets, kg 14.0  
Ferroalloys, kg 62.7              
Coke, kg 40.4    
Anthracite (hard coal), kg 31.0    
Black mineral (furnace) oil, kg 41.0    
Natural gas, m3 37.6        
Electrodes, kg 186.0 4.7 7.0
Oxygen, m3 5.8            
Refractory materials, kg 16.5           12.3 16.5
Lime, kg 5.4              
Electric energy, kW×h 11.25    






Дата добавления: 2015-08-30; просмотров: 561. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия