Предельный признак сравнения числовых положительных рядов
Предельный признак сравнения:Рассмотрим два положительных числовых ряда и . Если предел отношения общих членов этого ряда равен конечному, отличному от нуля числу : , то оба ряда сходятся или расходятся одновременно. Важные примечания: 1) Если речь идёт о двух сходящихся рядах, то предел может быть равен и нулю (но не бесконечности). 2) Если речь идёт о двух расходящихся рядах, то предел может быть равен и бесконечности (но не нулю). Когда применяется предельный признак сравнения? Предельный признак сравнения применяется тогда, когда «начинкой» ряда у нас являются многочлены. Либо один многочлен в знаменателе, либо многочлены и в числители и в знаменателе. Один или оба многочлена также могут находиться под корнем. Сразу рассмотрим пример, для которого не сработал только что рассмотренный признак сравнения. Пример 10 Исследовать ряд на сходимость Сравним данный ряд со сходящимся рядом . Используем предельный признак сравнения. Известно, что ряд – сходится. Если нам удастся показать, что равен конечному, отличному от нуля числу, то будет доказано, что ряд – тоже сходится. Почему для сравнения был выбран именно ряд ? Если бы мы выбрали любой другой ряд из «обоймы» обобщенного гармонического ряда, то у нас не получилось бы в пределе конечного, отличного от нуля числа (можете поэкспериментировать). Примечание: когда мы используем предельный признак сравнения, не имеет значения, в каком порядке составлять отношение общих членов, в рассмотренном примере отношение можно было составить наоборот: – это не изменило бы сути дела. Предельный признак сравнения применим почти для всех рядов, которые мы рассмотрели в предыдущем пункте: Пример 11 Исследовать ряд на сходимость
Что делать, если многочлены находятся и в знаменателе, и в числителе? Алгоритм решения почти такой же – нам нужно подобрать для сравнения подходящий ряд из «обоймы» обобщенного гармонического ряда. Пример 12 Исследовать ряд на сходимость Мы видим, что и в числителе и в знаменателе у нас многочлены, причем, в знаменателе многочлен находится под корнем. Подбираем ряд для сравнения . 1) Сначала нужно найти старшую степень знаменателя. Если бы не было корня, то, понятно, что старшая степень знаменателя равнялась бы четырем. Что делать, когда есть корень? Мысленно или на черновике отбрасываем все члены, кроме старшего: . Если есть константа, её тоже отбрасываем: . Теперь извлекаем корень: . Таким образом, старшая степень знаменателя равна двум. 2) Выясняем старшую степень числителя. Очевидно, что она равна единице. 3) Из старшей степени знаменателя вычитаем старшую степень числителя: 2 – 1 = 1 Таким образом, наш ряд нужно сравнить с рядом , то есть, с расходящимся гармоническим рядом. По мере накопления опыта решения эти три пункта можно и нужно проводить мысленно. Сравним данный ряд с расходящимся гармоническим рядом . Используем предельный признак сравнения: (1) Составляем отношение общих членов. Пример 13 Исследовать ряд на сходимость Например, рассмотрим ряд . Ага, 3 – 1 = 2, значит, ряд нужно сравнить со сходящимся рядом , и сразу можно сказать, что наш исследуемый ряд тоже сходится. Дело за малым – осталось аккуратно оформить стандартное рутинное решение.
|