Если общий член ряда не стремится к нулю, то ряд расходится
Или короче: Если , то ряд расходится. Докажем, что ряд из первого примера расходится. Необходимый признак сходимости ряда довольно часто встречается в практических заданиях: Пример 6 Исследовать ряд на сходимость когда старшие степени числителя и знаменателя равны, тогда предел равен конечному числу. Решаем: Готово. Пример 7 Какие типы очевидно расходящихся рядов мы рассмотрели? Сразу понятно, что расходятся ряды вроде или . Также расходятся ряды из примеров №№6,7: когда в числителе и знаменателе находятся многочлены, и старшая степень числителя больше либо равна старшей степени знаменателя. Во всех этих случаях при решении и оформлении примеров мы используем необходимый признак сходимости ряда. Почему признак называется необходимым? Потому-что, если общий член ряда стремится к нулю, ТО ЭТО ЕЩЕ НЕ ЗНАЧИТ, что ряд сходится. Или так: для того, чтобы ряд сходился, необходимо, чтобы его общий член стремился к нулю; но этого еще – не достаточно. Если общий член ряда стремится к нулю, то ряд может, как сходиться, так и расходиться! В таких случаях для решения примеров нужно использовать другие признаки. Знакомьтесь: Легко заметить, что , НО. В теории математического анализа доказано, что гармонический ряд расходится. Также следует запомнить понятие обобщенного гармонического ряда: Это элементарные факты из теории рядов, которые уже доказаны, и при решении какого-нибудь практического примера можно смело ссылаться, например, на расходимость ряда или сходимость ряда .
|