Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доверительные интервалы для оценки числовых характеристик нормального распределения





Доверительный интервал для математического ожидания нормального

распределения (при известном s)

 

В некоторых случаях среднее квадратическое отклонение s ошибки измерения (а вместе с нею и самого измерения) бывает известно. Например, если измерения проводились одним и тем же прибором при одних и тех же условиях, то s для всех измерений одно и тоже и обычно бывает известным.

Пусть количественный признак Х генеральной совокупности распределен нормально с параметрами а и s, причем среднее квадратическое отклонение s известно. Требуется оценить неизвестное математическое ожидание а по выборочной средней . Для этого построим доверительные интервалы, покрывающие параметр а с надежностью g.

Будем рассматривать как СВ и выборочные значения признака x1, x2, …, xn – как одинаково распределенные независимые СВ X1, X2, …, Xn. При этом .

 

Т.4.1. Если СВ Х распределена нормально, то выборочная средняя , найденная по независимым наблюдениям, так же распределена нормально. В этом случае

.

Пусть выполняется соотношение

,

где g - заданная надежность.

Если в формуле (см. нормальное распределение)

заменить Х на и s на , то получим

,

где . Отсюда .

Тогда .

Так как вероятность Р задана и равна g, то получим:

(3)

Смысл соотношения (3):

С надежностью g можно утверждать, что доверительный интервал покрывает неизвестный параметр а, причем точность оценки определяется как .

Число t определяется из равенства

Þ

Здесь Ф(t) – функция Лапласа, значение которой табулированы.

 

Доверительный интервал для математического ожидания нормального

распределения (при неизвестном s)

стр.291

Очевидно, в этом случае нельзя использовать ранее полученный интервал.

Однако, по данным выборки можно построить СВ

,

которая имеет распределение Стьюдента с k = n – 1 степенями свободы. Здесь - выборочная средняя, s – «исправленное» среднее квадратическое отклонение , n – объем выборки.

Пользуясь распределением Стьюдента, можно найти доверительный интервал

,

покрывающий неизвестный параметр а с надежностью g.

Для значений tg существуют специальные таблицы, в которых по заданным n и g можно найти tg.

 

Доверительный интервал для среднего квадратического отклонения нормального

распределения

стр.292-293

Пусть количественный признак Х генеральной совокупности распределен нормально. Требуется оценить неизвестное генеральное среднее квадратическое отклонение s по «исправленному» выборочному среднему квадратическому отклонению s. Для этого построим доверительные интервалы, покрывающие параметр s с заданной надежностью g.

Потребуем, чтобы выполнялось соотношение

, (4)

где g - заданная надежность.

Преобразуем неравенство |s – s| < e:

Таким образом, неравенство (4) примет вид:

(5)

 

Смысл соотношения (5):

С надежностью g можно утверждать, что доверительный интервал (s(1-q); s(1+q)) покрывает неизвестный параметр s, причем точность оценки определяется как

e = qs

 

Для q = q(g, n) составлены таблицы, по которым для известных n и g определяется q.

 

Замечание

Выше предполагалось, что q < 1. Если q > 1, то, учитывая, что s > 0, получим

,

то есть доверительный интервал имеет вид (0; s(1+q)).

 

Заключение

На сегодняшней лекции мы изучили задачу оценивания параметров известного теоретического распределения, познакомились с точечными и интервальными оценками, рассмотрели их свойства.

 

 







Дата добавления: 2015-08-30; просмотров: 822. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия