Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение задач


1.

Вариант 1.

В результате измерений некоторой физической величины одним прибором (без систематических ошибок) получены следующие результаты (в мм): 3,6; 3,8; 4,3. Тогда несмещенная оценка дисперсии равна …

· 0,13

· 0,065

· 3,9

· 0,7

 

Вариант 2.

 

Проведено пять измерений (без систематических ошибок) некоторой случайной величины (в мм): 2,1; 2,3;; 2,7; 2,9. Если несмещенная оценка математического ожидания равна 2,48, то равно …

· 2,4

· 2,5

· 2,6

· 2,48

 

Вариант 3.

 

Проведено четыре измерения (без систематических ошибок) некоторой случайной величины (в мм): 8, 9, , 12. Если несмещенная оценка математического ожидания равна 10, то выборочная дисперсия будет равна …

· 2,5

· 2,0

· 0

· 1,5

 

Вариант 4.

 

Проведено пять измерений (без систематических ошибок) некоторой случайной величины (в мм): 4,5; 5,2; 6,1; 7,8, 8,3. Тогда несмещенная оценка математического ожидания равна …

· 6,38

· 6,42

· 6,1

· 6,4

 

Вариант 5.

 

В результате измерений некоторой физической величины одним прибором (без систематических ошибок) получены следующие результаты (в мм): 15; 18; 21; 24. Тогда выборочная дисперсия равна …

· 11,25

· 19,5

· 15

· 21,25

 

2.

Вариант 1.

 

Из генеральной совокупности извлечена выборка объема :

 

Тогда выборочное среднее квадратическое отклонение равно …

·

·

· 10,46

·

 

Вариант 2.

 

По выборке объема найдена выборочная дисперсия . Тогда исправленное среднее квадратическое отклонение равно …

· 2,0

· 4,0

· 3,24

· 1,8

 

Вариант 3.

 

Из генеральной совокупности извлечена выборка объема :

Тогда несмещенная оценка математического ожидания равна …

 

· 13,14

· 13,0

· 13,34

· 13,2

 

3.

Вариант 1.

 

Если все варианты исходного вариационного ряда увеличить в два раза, то выборочная дисперсия

 

· увеличится в четыре раза

· увеличится в два раза

· не изменится

· увеличится на четыре единицы

 

Решение задач

Вид.

1.

В результате измерений некоторой физической величины одним прибором (без систематических ошибок) получены следующие результаты (в мм): 3,6; 3,8; 4,3. Тогда несмещенная оценка дисперсии равна …

· 0,13

· 0,065

· 3,9

· 0,7

 

Решение:

Несмещенная оценка дисперсии вычисляется по формуле:

, где . Вычислив предварительно , получаем .

 

2.

Проведено пять измерений (без систематических ошибок) некоторой случайной величины (в мм): 2,1; 2,3;; 2,7; 2,9. Если несмещенная оценка математического ожидания равна 2,48, то равно …

· 2,4

· 2,5

· 2,6

· 2,48

Решение:

Несмещенная оценка математического ожидания вычисляется по формуле: . То есть .

Следовательно, .

3.

Проведено четыре измерения (без систематических ошибок) некоторой случайной величины (в мм): 8, 9, , 12. Если несмещенная оценка математического ожидания равна 10, то выборочная дисперсия будет равна …

· 2,5

· 2,0

· 0

· 1,5

Решение:

Вычислим предварительно значение . Так как несмещенная оценка математического ожидания вычисляется по формуле: , то . Следовательно, .

Для вычисления выборочной дисперсии применим формулу .

Тогда .

4.

Проведено пять измерений (без систематических ошибок) некоторой случайной величины (в мм): 4,5; 5,2; 6,1; 7,8, 8,3. Тогда несмещенная оценка математического ожидания равна …

· 6,38

· 6,42

· 6,1

· 6,4

Решение:

Несмещенная оценка математического ожидания вычисляется по формуле . То есть .

5.

В результате измерений некоторой физической величины одним прибором (без систематических ошибок) получены следующие результаты (в мм): 15; 18; 21; 24. Тогда выборочная дисперсия равна …

· 11,25

· 19,5

· 15

· 21,25

 

 

Решение:

Выборочная дисперсия вычисляется по формуле , где . Вычислив предварительно , получаем .

Вид.

1.

Из генеральной совокупности извлечена выборка объема :

 

Тогда выборочное среднее квадратическое отклонение равно …

 

 

·

·

· 10,46

·

 

Решение:

Выборочное среднее квадратическое отклонение вычисляется как , где . Тогда

, и .

2.

По выборке объема найдена выборочная дисперсия . Тогда исправленное среднее квадратическое отклонение равно …

· 2,0

· 4,0

· 3,24

· 1,8

Решение:

Исправленное среднее квадратическое отклонение вычисляется как , где . Тогда .

 

3.

Из генеральной совокупности извлечена выборка объема :

Тогда несмещенная оценка математического ожидания равна …

 

· 13,14

· 13,0

· 13,34

· 13,2

Решение:

Несмещенная оценка математического ожидания вычисляется по формуле . То есть .

Вид

1.

Если все варианты исходного вариационного ряда увеличить в два раза, то выборочная дисперсия

  • увеличится в четыре раза
  • увеличится в два раза
  • не изменится
  • увеличится на четыре единицы
Решение:

Для исходного вариационного ряда выборочную дисперсию можем вычислить по формуле .




<== предыдущая лекция | следующая лекция ==>
Методическая разработка | Выборочная средняя и выборочная дисперсия.

Дата добавления: 2015-08-30; просмотров: 21167. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия