Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение задач


1.

Вариант 1.

В результате измерений некоторой физической величины одним прибором (без систематических ошибок) получены следующие результаты (в мм): 3,6; 3,8; 4,3. Тогда несмещенная оценка дисперсии равна …

· 0,13

· 0,065

· 3,9

· 0,7

 

Вариант 2.

 

Проведено пять измерений (без систематических ошибок) некоторой случайной величины (в мм): 2,1; 2,3;; 2,7; 2,9. Если несмещенная оценка математического ожидания равна 2,48, то равно …

· 2,4

· 2,5

· 2,6

· 2,48

 

Вариант 3.

 

Проведено четыре измерения (без систематических ошибок) некоторой случайной величины (в мм): 8, 9, , 12. Если несмещенная оценка математического ожидания равна 10, то выборочная дисперсия будет равна …

· 2,5

· 2,0

· 0

· 1,5

 

Вариант 4.

 

Проведено пять измерений (без систематических ошибок) некоторой случайной величины (в мм): 4,5; 5,2; 6,1; 7,8, 8,3. Тогда несмещенная оценка математического ожидания равна …

· 6,38

· 6,42

· 6,1

· 6,4

 

Вариант 5.

 

В результате измерений некоторой физической величины одним прибором (без систематических ошибок) получены следующие результаты (в мм): 15; 18; 21; 24. Тогда выборочная дисперсия равна …

· 11,25

· 19,5

· 15

· 21,25

 

2.

Вариант 1.

 

Из генеральной совокупности извлечена выборка объема :

 

Тогда выборочное среднее квадратическое отклонение равно …

·

·

· 10,46

·

 

Вариант 2.

 

По выборке объема найдена выборочная дисперсия . Тогда исправленное среднее квадратическое отклонение равно …

· 2,0

· 4,0

· 3,24

· 1,8

 

Вариант 3.

 

Из генеральной совокупности извлечена выборка объема :

Тогда несмещенная оценка математического ожидания равна …

 

· 13,14

· 13,0

· 13,34

· 13,2

 

3.

Вариант 1.

 

Если все варианты исходного вариационного ряда увеличить в два раза, то выборочная дисперсия

 

· увеличится в четыре раза

· увеличится в два раза

· не изменится

· увеличится на четыре единицы

 

Решение задач

Вид.

1.

В результате измерений некоторой физической величины одним прибором (без систематических ошибок) получены следующие результаты (в мм): 3,6; 3,8; 4,3. Тогда несмещенная оценка дисперсии равна …

· 0,13

· 0,065

· 3,9

· 0,7

 

Решение:

Несмещенная оценка дисперсии вычисляется по формуле:

, где . Вычислив предварительно , получаем .

 

2.

Проведено пять измерений (без систематических ошибок) некоторой случайной величины (в мм): 2,1; 2,3;; 2,7; 2,9. Если несмещенная оценка математического ожидания равна 2,48, то равно …

· 2,4

· 2,5

· 2,6

· 2,48

Решение:

Несмещенная оценка математического ожидания вычисляется по формуле: . То есть .

Следовательно, .

3.

Проведено четыре измерения (без систематических ошибок) некоторой случайной величины (в мм): 8, 9, , 12. Если несмещенная оценка математического ожидания равна 10, то выборочная дисперсия будет равна …

· 2,5

· 2,0

· 0

· 1,5

Решение:

Вычислим предварительно значение . Так как несмещенная оценка математического ожидания вычисляется по формуле: , то . Следовательно, .

Для вычисления выборочной дисперсии применим формулу .

Тогда .

4.

Проведено пять измерений (без систематических ошибок) некоторой случайной величины (в мм): 4,5; 5,2; 6,1; 7,8, 8,3. Тогда несмещенная оценка математического ожидания равна …

· 6,38

· 6,42

· 6,1

· 6,4

Решение:

Несмещенная оценка математического ожидания вычисляется по формуле . То есть .

5.

В результате измерений некоторой физической величины одним прибором (без систематических ошибок) получены следующие результаты (в мм): 15; 18; 21; 24. Тогда выборочная дисперсия равна …

· 11,25

· 19,5

· 15

· 21,25

 

 

Решение:

Выборочная дисперсия вычисляется по формуле , где . Вычислив предварительно , получаем .

Вид.

1.

Из генеральной совокупности извлечена выборка объема :

 

Тогда выборочное среднее квадратическое отклонение равно …

 

 

·

·

· 10,46

·

 

Решение:

Выборочное среднее квадратическое отклонение вычисляется как , где . Тогда

, и .

2.

По выборке объема найдена выборочная дисперсия . Тогда исправленное среднее квадратическое отклонение равно …

· 2,0

· 4,0

· 3,24

· 1,8

Решение:

Исправленное среднее квадратическое отклонение вычисляется как , где . Тогда .

 

3.

Из генеральной совокупности извлечена выборка объема :

Тогда несмещенная оценка математического ожидания равна …

 

· 13,14

· 13,0

· 13,34

· 13,2

Решение:

Несмещенная оценка математического ожидания вычисляется по формуле . То есть .

Вид

1.

Если все варианты исходного вариационного ряда увеличить в два раза, то выборочная дисперсия

  • увеличится в четыре раза
  • увеличится в два раза
  • не изменится
  • увеличится на четыре единицы
Решение:

Для исходного вариационного ряда выборочную дисперсию можем вычислить по формуле .




<== предыдущая лекция | следующая лекция ==>
Методическая разработка | Выборочная средняя и выборочная дисперсия.

Дата добавления: 2015-08-30; просмотров: 21167. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия