Студопедия — Временем включения управления (временем принятия решения)
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Временем включения управления (временем принятия решения)






Минимальный уровень контролируемого входного сигнала для ППС – это порог чувствительности сигнала рецептора «Х», начиная с которого анализатор-контактор распознаёт, что внешнее воздействие уже началось. Например, если рО2 достигло 60 мм Hg, то должен быть открыт сфинктер (срабатывает 1 СФЕ), если меньше – закрыт. Любые значения рО2, меньшие чем 60 мм Hg не приведут к открытию сфинктера, потому что они подпороговые. Следовательно, 60 мм Hg являются порогом срабатывания сфинктера.

Максимальный уровень контролируемого входного сигнала (диапазон) для ППС – это уровень сигнала о внешнем воздействии, при котором срабатывают все СФЕ. На дальнейшее увеличение входного сигнала система уже не может реагировать увеличением своей функции, потому что у неё нет больше резервов СФЕ. Например, если рО2 достигло 100 мм Hg, то должны быть открыты все сфинктеры (срабатывают все СФЕ). Любые значения рО2, большие чем 100 мм Hg не приведут к открытию дополнительных сфинктеров, потому что они все уже открыты. Следовательно, 60-100 мм Hg являются диапазоном срабатывания системы сфинктеров.

Время включения ППС – промежуток времени между началом внешнего воздействия и началом срабатывания системы. Система никогда не срабатывает мгновенно после появления внешнего воздействия. Пока рецепторы почувствуют сигнал, пока анализатор-контактор примет решение, пока эффекторы передадут управляющее воздействие на входы уставок исполнительных элементов, на всё это уходит время.

Минимальный уровень контролируемого выходного сигнала для ООС – это порог чувствительности сигнала рецептора «У», начиная с которого анализатор-эффектор распознаёт, что есть расхождение между результатом действия системы и его должной величиной. Расхождение должно быть равно или больше кванта действия одиночной СФЕ. Например, если должен быть открыт один сфинктер и кровоток должен быть минимальным (один квант действия), а на самом деле открыто два сфинктера и кровоток в два раза больше (два кванта действия), то рецептор «У» должен почувствовать лишний квант. Если он может это сделать, то его чувствительность равна одному кванту. Чувствительность определяется глубиной ООС.

Глубина ООС – это число квантов действия одиночных СФЕ системы, сумма которых распознаётся как расхождение между актуальным результатом действия и должным. Задаётся уставкой. Максимально большой глубиной ООС является чувствительность расхождения в один квант действия одиночной СФЕ. Чем меньше глубина ООС, тем меньше чувствительность, тем она более «грубая». Т.е., чем меньше глубина ООС, тем большее расхождение результата действия с должным воспринимается как расхождение. Например, уже два (три, десять и т.д.) кванта действия двух (трёх, десяти и т.д.) СФЕ воспринимается как расхождение. Минимальной глубиной ООС является её отсутствие. В этом случае любое расхождение результата действия с должным не воспринимается блоком управления как расхождение. Результат действия будет максимальным и система с простым блоком управления с нулевой глубиной ООС превращается в составную СФЕ с ППС (с простейшим блоком управления).

Например, система микроциркуляции БКК в тканевых капиллярах должна держать среднее давление 100 мм Hg с точностью до 1 мм Hg. При этом среднее артериальное давление может колебаться от 80 до 200 мм Hg. Величина «100 мм Hg» определяет уровень контролируемого результата действия. Величина «от 80 до 200 мм Hg» диапазон контролируемого внешнего (входного) воздействия. Величина «1 мм Hg» определяется глубиной ООС. Меньшая глубина ООС будет контролировать параметр с меньшей точностью, например с точностью до 10 мм Hg (более грубо) или 50 мм Hg (ещё грубее), а большая глубина ООС – с большей точностью, например с точностью до 0.1 мм Hg (более тонко). Максимальная чувствительность ООС ограничена величиной кванта действия СФЕ, входящих в состав системы и глубиной ООС. Но в любом случае если происходит расхождение уровня контролируемого параметра с заданным более, чем на величину заданной точности, петля ООС должна «почувствовать» это расхождение и «заставить» исполнительные элементы действовать таким образом, чтобы расхождение цели и результата действия исчезло.

Максимальный уровень контролируемого выходного сигнала (диапазон) для ООС – это уровень сигнала о результате действия системы, при котором срабатывают все СФЕ. На дальнейшее увеличение расхождения система же не сможет реагировать увеличением своей функции, потому что у неё нет больше резервов СФЕ.

Время включения управления ООС – промежуток времени между началом расхождения сигнала о результате действия с целевым и началом срабатывания системы.

Все эти параметры могут быть «встроены» в ППС и в петли ООС изначально (уставка вводится при их «рождении») и в дальнейшем они уже не меняются. Либо могут быть введены с уставкой позже и эти параметры можно менять путём ввода извне новой уставки. Для этого должен быть канал ввода уставки. Сам же простой блок управления самостоятельно не может менять ни один из этих параметров.

Абсолютно у всех систем есть блок управления, но не всегда его можно явно обнаружить. У самолёта или космического корабля этим блоком является бортовой компьютер – коробка с электроникой. У человека и других животных таким блоком является головной мозг, или, как минимум, нервная система. Но где блок управления у растения, или у бактерии? Где блок управления у атома или молекулы, или, например, блок управления у гвоздя?

Чем проще система, тем труднее выделить в нём привычные для нас формы блока управления. Но он есть в любых системах. Элементы исполнения отвечают за качество результата действия, а блок управления – за его количество. Блоком управления могут быть, например, внутри- или межатомные и межмолекулярные связи. Так в атоме функции СФЕ выполняют электроны, протоны и нейтроны, а блок управления – внутриядерные силы, или, как ещё говорят, взаимодействия.

Внутриатомной уставкой, например, является условие, что на первом электронном уровне может быть не более 2 электронов, на втором – 8 электронов и т.д. (периодический закон, определяемый принципом Паули), причём этот уровень жестко задан квантовыми числами. Если электрон каким-то образом получил добавочную энергию и поднялся выше своего уровня, то он не сможет её долго удерживать и опустится обратно, испустив излишек энергии в виде фотона. Но не любая энергия может поднять электрон на другой уровень, а только и только определённая (соответствующий квант энергии). И поднимается он не на любой уровень, а только на строго заданный, определяемый величиной принятого кванта энергии. Если энергия внешнего воздействия будет меньше соответствующего кванта, система стабилизации уровня электрона будет удерживать его на прежней орбите (в прежнем состоянии) до тех пор, пока энергия внешнего воздействия не превысит соответствующий уровень. Если же энергия внешнего воздействия будет всё время линейно нарастать, то электрон будет подниматься с уровня на уровень не линейно, а перескакивать скачками, которые строго определены квантовыми законами, на всё более высокие орбиты, как только энергия воздействия превысит определённые пороговые уровни. Число уровней орбиты электрона в атоме, вероятно, очень большое и равно числу спектральных линий соответствующего атома, но каждый уровень строго фиксирован и определён квантовыми законами. Следовательно, какой-то механизм (система стабилизации квантовых уровней) строго следит за выполнением этих законов, и у этого механизма должны быть свои СФЕ и блоки управления. Число уровней орбиты электрона, вероятно, определяется числом внутриядерных СФЕ (протонов и нейтронов или же других элементарных частиц) и их взаимодействием, результатом действия которых является положение электрона на электронной орбите.

Даже у гвоздя, несмотря на его простоту, есть блок управления, содержащий ППС и ООС, которые работают в соответствии с выше описанным алгоритмом. Нам трудно найти в нём какое-то образование, которое выполняет функции блока управления, но мы видим эти функции (управления) по конечному результату. У гвоздя уставкой являются его форма и геометрические размеры. Эта уставка вводится в блок управления однократно в момент изготовления гвоздя, когда отмеряются его размеры (в момент его «рождения»), и больше уже не вводится. Но когда уставка уже введена, то система должна выполнять эту уставку, т.е., гвоздь должен держать форму и размеры, даже если по нему бьют молотком. Причём мера его противодействия (его реакция) в ответ на сгибание в точности равна величине внешнего воздействия. Если его противодействие будет больше, чем сила сгибания, то он прогнётся в сторону противоположную силе сгибания. Если меньше, то он просто согнётся. Но гвоздь «умудряется» держать свою форму с той или иной точностью в довольно больших пределах изгибающей его силы. Следовательно, блок управления гвоздя справляется со своей задачей.

В любых типах блока управления в какой-то момент должна быть введена уставка тем или иным образом. Мы не можем изготовить гвоздь «вообще», а только конкретной формы и заданных размеров. Поэтому, в момент его изготовления (т.е., однократно) мы «задаём» ему задание быть такой-то формы и размеров.

Уставка может меняться, если есть канал ввода уставки. Например, при включении кондиционера воздуха, мы можем «задать» ему держать температуру воздуха 20°С, а затем поменять уставку на 25°С. У гвоздя нет канала ввода уставки, а у кондиционера есть.

У простого блока управления есть три канала управления – один внешний (уставка) и два внутренних (ППС и ООС). Он реагирует на внешнее воздействие через ППС (информатор «Х») и на собственный результат действия системы (информатор «У») через ООС, а через эфферентные пути управляет исполнительными элементами системы.

Аналогом систем с простым блоком управления являются все объекты неживого мира – газовые облака, кристаллы, различные твёрдые тела, планеты, планетарные и звёздные системы и т.д.

Биологическим аналогом систем с простым блоком управления являются одно- и многоклеточные растения, бактерии и все вегетативные системы организма, включая, например, систему внешнего газообмена, систему кровообращения, систему обмена метаболических газов, систему пищеварения или иммунную систему.

Одноклеточные животные организмы типа амёб и инфузорий, низшие классы животных (медузы и пр.) являются системами с уже сложными блоками управления (см. далее).

Все вегетативные и многие двигательные рефлексы высших животных, срабатывающие на всех уровнях, начиная с интрамуральных нервных ганглиев и вплоть до гипоталамуса, построены по типу простых блоков управления. Если же на них оказывается управляющее влияние коры головного мозга, то появляются рефлексы более высокого типа – сложные рефлексы (см. далее).

Аналогом рецепторов «Х» анализатора-контактора в животном мире являются все чувствительные рецепторы (хемо-, баро-, термо- и прочие рецепторы, расположенные в различных органах, кроме зрительных, слуховых и обонятельных рецепторов, которые входят в состав информатора «С», см. далее).

Аналогом анализатора-контактора или анализатора-эффектора в минеральном и растительном мирах являются только связи между элементами по типу прямого соединения рецепторов «X» и «У» с эффекторами (аксон-рефлексы). В вегетативных системах животных – также по типу прямого соединения рецепторов «X» и «У» с эффекторами (гуморальная и метаболическая регуляция), по типу аксон-рефлекса (управляют только веточки нерва без участия самой нервной клетки) и по типу безусловных рефлексов (на уровне внутриорганных интрамуральных и других нейронных образований вплоть до гипоталамуса).

Аналогом рецепторов анализатора-эффектора «У» являются все проприо-чувствительные рецепторы, которые также могут быть хемо-, баро-, термо- и прочими рецепторами, расположенные в различных органах.

Аналогом стимуляторов блока управления являются все двигательные и эффекторные нервы, стимулирующие поперечно-полосатую, гладкомышечную мускулатуру и секреторные клетки, а также гормоны, простагландины и прочие метаболиты, оказывающие какое-либо влияние на метаболизм и функцию каких-либо систем организма.

Так работает простой блок управления. Используя ППС и ООС и регулируя число активных СФЕ система продуцирует свои результаты действия, качественно и количественно соответствующие заданной цели.

Выводы:

система с простым блоком управления является объектом, который может реагировать на определённое внешнее воздействие, и, как и СФЕ, давать результат действия определённого качества, но в отличие от СФЕ, результат действия системы градуированный, стабильный и точный, потому, что блок управления контролирует его с помощью ООС и может регулировать его количество

реакция системы обусловлена типом и числом её СФЕ.

число градаций результата действия определяется числом СФЕ в системе, а точность – квантом действия одиночной СФЕ и глубиной ОСС







Дата добавления: 2015-09-19; просмотров: 418. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия