Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Моделирование временного ряда





В общем случае каждый уровень временного можно представить как функцию четырех компонент: f (t), S (t), U (t), (t), отражающих закономерность и случайность развития. Где

f (t) – тренд (долговременная тенденция) развития;

S (t) – сезонная компонента;

U (t) –циклическая компонента;

(t)– остаточная компонента.

В модели временного ряда принято выделять две основные составляющие: детерминированную (систематическую) и случайную. Под детерминированной составляющей временного ряда понимают числовую последовательность, элементы которой вычисляются по определенному правилу как функция времени t. Исключив детерминированную составляющую из данных, мы получим колеблющийся вокруг нуля ряд, который может в одном предельном случае представлять случайные скачки, а в другом – плавное колебательное движение.

Детерминированная составляющая может содержать следующие структурные компоненты:

1) тренд, или тенденция f (t), представляет собой устойчивую закономерность, наблюдаемую в течение длительного периода времени. Обычно тренд (тенденция) описывается с помощью той или иной неслучайной функции f тр(t) (аргументом которой является время), как правило, монотонной. Эту функцию называют функцией тренда, или просто – трендом.

2) Сезонная компонента s(t) связана с наличием факторов, действующих с заранее известной периодичностью. Это регулярные колебания, которые носят периодический или близкий к нему характер и заканчиваются в течение года. Типичные примеры сезонного эффекта: изменение загруженности автотрассы по временам года, пик продаж товаров для школьников в конце августа – начале сентября. Спрос на пластические операции сезонный: в осенне-зимний период обращений больше. Типичным примером являются сильные колебания объема товарно-материальных запасов в сезонных отраслях Сезонная компонента со временем может меняться, либо иметь плавающий характер.

3) Циклическая компонента u (t) – неслучайная функция, описывающая длительные периоды (более одного года) относительного подъема и спада и состоящая из циклов переменной длительности и амплитуды. Примером циклической (конъюнктурной) компоненты являются волны Кондратьева, демографические «ямы» и т.п. Подобная компонента весьма характерна для рядов макроэкономических показателей. Здесь циклические изменения обусловлены взаимодействием спроса и предложения, а также наложением таких факторов, как истощение ресурсов, погодные условия, изменения в налоговой политике и т.п. Отметим, что циклическую компоненту крайне трудно идентифицировать формальными методами, исходя только из данных изучаемого ряда.

4) Случайная компонента (t) - это составная часть временного ряда, оставшаяся после выделения систематических компонент. Она отражает воздействие многочисленных факторов случайного характера и представляет собой случайную, нерегулярную компоненту. Она является обязательной составной частью любого временного ряда в экономике, так как случайные отклонения неизбежно сопутствуют любому экономическому явлению. Если систематические компоненты временного ряда определены правильно, то остающаяся после выделения из временного ряда этих компонент так называемая остаточная последовательность (ряд остатков) будет случайной компонентой ряда.

В анализе случайного компонента экономических временных рядов важную роль играет сравнение случайной величины с хо­рошо изученной формой случайных процессов - стационарными случайными процессами.

В зависимости от вида связи между этими компонентами может быть построена либо аддитивная модель:

Y (t) =f (t)+ S (t)+ U (t)+ (t); (3.1)

либо мультипликативная модель:

Y (t) =f (tS (tU (t)+ (t) (3.2)

В процессе формирования значений временных рядов не всегда участвуют все четыре компоненты. Однако во всех случаях предполагается наличие случайной составляющей.

Тренды. Проводя разложение ряда на компоненты, мы, как правило, подразумеваем под трендом изменение среднего уровня переменной, то есть тренд среднего.

В рамках анализа тренда среднего чаще всего используют полиномиальный тренд:

(3.3)

Для p = 1 имеем линейный тренд.

AR(p) -авторегрессионая модель порядка p. Модель имеет вид:

(3.4)

где - зависимая переменная в момент времени t.

- оцениваемые параметры. - ошибка от влияния переменных, которые не учитываются в данной модели.

Задача заключается в том, чтобы определить . Их можно оценить различными способами. Один из наиболее простых способов - посчитать их методом наименьших квадратов.

Термин авторегрессия для обозначения модели (3.4) используется потому, что она фактически представляет собой модель регрессии, в которой регрессорами служат лаги изучаемого ряда . По определению авторегрессии ошибки Et являются белым шумом и некоррелированы с лагами . Таким образом, выполнены все основные предположения регрессионного анализа: ошибки имеют нулевое математическое ожидание, некоррелированы с регрессорами, не автокоррелированы и гомоскедастичны. Следовательно, модель (3.4) можно оценивать с помощью обычного метода наименьших квадратов. Отметим, что при таком оценивании p начальных наблюдений теряются.

После построения любой модели временного ряда, прежде, чем прогнозировать по этой модели, нужно убедиться в ее адекватности, т.е. убедиться, что остатки некоррелированы между собой.

Критерий Дарбина-Уотсона является наиболее распространенным критерием для проверки корреляции внутри ряда. Если величина

, где - расхождение между фактическими и расчетными уровнями, имеет значение, близкое к 2, то можно считать модель достаточно адекватной. Когда адекватная модель найдена, можно делать прогнозы на один или несколько периодов вперед.







Дата добавления: 2015-09-19; просмотров: 2165. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия