Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение 2.2.(3)





Множества равны, если они содержат одни и те же элементы, порядок элементов, как уже отмечалось, роли не играет.

Иначе говоря,

A=B, если для любого x выполняется:

 

Например, если А ={2,4,6}, а В = {х: х есть четное положительное целое число, которое меньше 7}, тогда А и В — равные множества.

Как уже упоминалось, если не оговаривается обратное, порядок следования элементов в множестве не имеет значения, как и наличие повтора элементов (то есть множество однозначно определяется только элементами, которые оно содержит), поэтому A={1,2,3,4,5}, B={2,3,1,4,5}, C={1,1,2,3,3,3,5,4,4,4,4}, A = B = C.

 

 

Можно определить равенство множеств и следующим образом:

A=B

Если A B и то говорят, что A - собственное подмножество множества B.

 

Таким образом, доказательство равенства множеств А и В состоит из двух

этапов:

1) Доказать, что А есть подмножество В.

2) Доказать, что В есть подмножество А.

 

Замечание 2.2.(2). Рассматривая множества и действия над ними, обычно имеют в виду существование некоторого основного (базового, универсального) множества, из которого черпают примеры множеств. Мы будем обозначать его Ω (это обозначение принято в теории вероятностей, к изучению которой мы перейдем во втором семестре). В теории множеств его обозначают какой-либо заглавной латинской буквой, например М или U.

В некотором смысле основное множество Ω и пустое множество Ø представляют собой противоположности, поскольку пустое множество не содержит элементов, а универсальное множество содержит "все" элементы.

 

 

2.2.Операции над множествами. Формула двойственности

Рис.2.2.(1)

Множества удобно изображать в виде рисунка, который называется кругами Эйлера (в теории множеств) или диаграммами Венна(Вьенна) (в логике). На рисунке 2.2.(1) основное множество (пространство)W изображено в виде прямоугольника, а произвольное множество A, заключено в эллипс. Сами элементы (точки) на кругах Эйлера не изображаются, а информация о соотношении между их множествами содержится в расположении границ соответствующих областей.

Суммой (объединением)двух множеств А и B (обозначается A U B или А+В) называется множество, состоящее из всех элементов, принадлежащих по крайней мере одному из множеств А или B, возможно и обоим, но по крайней мере одному – точно.

 

Рис.2.2.(2)

Приведем пример объединения множеств. Пусть множество А - множество россиян, а множество B – множество студентов, тогда A U B есть множество всех людей, являющихся либо гражданами РФ, либо студентами (возможно, и то и другое, но хотя бы одно условие должно быть выполнено)

Рис.2.2.(3)

Произведением (пересечением) AB (или АВ, А×В)множеств А и B называется множество, состоящее из всех тех точек, которые принадлежат и А и B. В нашем примере это множество учащихся в высших учебных заведениях россиян

 

 

Если у множеств нет общих точек (см рис.2.2.(4)), их

Рис. 2.2.(4) их пресечение пусто A∩ B = Ø

 

 

Разностью А \ B или А - B событий А и B называется событие, состоящее из всех исходов события А, не благоприятствующих событию B. Диаграмма Венна разности событий А и B изображена на рисунке 2.2.(5).

Рис.2.2.(5)

В условиях рассмотренного выше примера множество А \ B состоит из тех россиян, которые в данный момент студентами не являются

 

Симметрической разностью А∆В называется событие, состоящее из всех исходов, входящих в события А и В по-отдельности, но не принадлежащие им обоим (на рис. 2.2.(3)) – незаштрихованная область внутри А и В). А∆В = A U B \ AB. Это, соответственно, россияне – не студенты и студенты – не россияне.

 

Множество = W \ A = СΩА, состоящее из всех точек, не принадлежащих множеству А (но принадлежащих определенному основному множеству Ω) дополнением множества А (до множества (пространства) Ω). (заштрихованная область вне множества А на рис. 2.2.(6)).

 

 
 


 

 
 

 


Рис. 2.2.(6)

 

 

Замечание. Существенно, что мы находимся все время в рамках одного и того же основного множества – Ω, поскольку без него операцию дополнения просто не определить.

 







Дата добавления: 2015-09-19; просмотров: 524. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия