Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оценка корреляционной функции





В прикладных задачах часто нужно определить корреляционную функцию и спектральную плотность по экспериментальным данным. При этом мы можем наблюдать и анализировать только «кусок» реализации на временном интервале от нуля до некоторого , поэтому для невозможно использовать усреднение по ансамблю. Остается надеяться на то, что процесс эргодический, и применять усреднение по времени.

Пусть известна реализация случайного процесса на интервале от 0 до . Для оценки (приближенного вычисления) корреляционной функции при (то есть при положительных , достаточно малых по сравнению с ) можно использовать формулу

.

(1)

Обратите внимание, что время усреднения равно , а не , потому что только интервал содержит как , так и . К сожалению, точно вычислить этот интеграл невозможно, потому что мы не знаем математическую формулу для . В реальности обычно известны только значения этой функции (выборка) в моменты , где – интервал между измерениями. Тогда можно приближенно подсчитать только для (где ) по формуле

, , в которой интеграл заменен на сумму.

С теоретической точки зрения математическое ожидание такой оценки (при усреднении по ансамблю)совпадает с истинной корреляционной функцией, то есть это – несмещенная оценка.

Оценка спектральной плотности







Дата добавления: 2015-09-19; просмотров: 688. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия