Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Алгебраические циклы





Пусть интегральный канал переоборудован по методу обратных разностей

,

что соответствует разностному уравнению

. (*)

Теперь построим выражение для сигнала . Учтем, что

и ,

где функция задает нелинейность типа «насыщение»:

Объединяя эти формулы, получим разностное уравнение для вычисления :

.

В этой формуле значение , которое требуется рассчитать, входит и в правую часть! Это значит, что для вычисления требуется не просто подставить в формулу известные значения, а решить нелинейное уравнение относительно . Такое явление называется алгебраическим циклом, его желательно избегать. Более того, в сложных случаях это уравнение может не иметь решения вообще. Система Matlab-Simulink выдает предупреждение в случае обнаружения алгебраического цикла (algebraic loop) при моделировании.

Для того, чтобы не было алгебраического цикла, правая часть разностного уравнения (аналогичного уравнению (*)) не должна зависеть от . Это будет в том случае, если передаточная функция – строго правильная, т.е., степень ее числителя меньше степени знаменателя. Из всех рассмотренных вариантов переоборудования интегратора этому условию удовлетворяет метод Эйлера, который мы и будем использовать в работе. При попытке применить метод обратных разностей или преобразование Тастина возникает алгебраический цикл, потому что степени числителя и знаменателя передаточной функции равны.







Дата добавления: 2015-09-19; просмотров: 608. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия