Студопедия — ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ. ФГБОУ ВПО «Сибирский государственный технологический университет»
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ. ФГБОУ ВПО «Сибирский государственный технологический университет»

 

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

 

ФГБОУ ВПО «Сибирский государственный технологический университет»

 

Факультет: экономический

Кафедра: Экономики и организации отраслей

химико-лесного комплекса

 

 

Контрольная работа

(ЭООХЛК-082.000000.№№№. ПЗ)

 

Основы внешнеэкономической деятельности предприятия

 

 

Руководитель:

__________________________

(подпись) Ф.И.О.

 

Оценка _______ Дата ______

 

Разработал студ. гр. _______

 

_________________________

Ф.И.О.

 

 

Красноярск 201_ г.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

З а д а ч а 1. Бесконечная заряженная плоскость с поверхностной плотнос-тью заряда 6,00 нКл/м2 расположена перпендикулярно бесконечно длинной заряженной нити с линейной плотностью заряда -5,00 нКл/м. На биссектрисе угла между плоскостью и нитью на расстоянии 500 мм от вершины угла находится точечный заряд -10,0 нКл. Найти величину и направление напряженности электрического поля в точке, лежащей на биссектрисе этого угла и отстоящей от его вершины на расстоянии 100 мм; разность потенциалов электрического поля между двумя точками, расположенными на биссектрисе угла на расстоянии 100 и 300 мм от вершины.

 

Дано: СИ
-q
+ σ
α
 
 
Y
X
Рис. 1
α
a
b
c
Решение.

 


 

σ = 6,00 нКл/м2 Кл/м2
τ = 5,00 нКл/м Кл/м
q = 10,0 нКл Кл
a = 100 мм 0,1 м
b = 300 мм 0,3 м
c = 500 мм 0,5 м
α = 45º  
-? (φ1 – φ2) -?  

 

 

 
Электрическое поле создается тремя заряженными телами: бесконечной плоскостью, бесконечно длинной нитью и точечным зарядом. В точке 1 (рис. 1), лежащей на биссектрисе угла на расстоянии а, равном 10 см, от вершины, определяем направление векторов напряженности , , электрического поля, созданного плоскостью (), заряженной нитью () и точечным зарядом (). Результирующую напряженность в этой точке найдем по принципу суперпозиции электрических полей:

(1)

Для записи векторного уравнения (1) в скалярной форме выбираем инерциальную систему отсчета и находим проекции всех векторов на координатные оси:

(2)

Значение напряженности полей, создаваемых каждым электрическим зарядом, вычислим по формулам:

для бесконечной заряженной плоскости -

, (3)

где - электрическая постоянная (см. прил.);

для бесконечно длинной заряженной нити –

, (4)

где - кратчайшее расстояние от нити до точки 1;

для точечного электрического заряда –

. (5)

С учетом формул (3) - (5) получим:

(6)

Проверяем единицы измерения:

Производим вычисления:

Величину напряженности в точке 1 найдем по формуле:

(7)

Для вычисления разности потенциалов между точками 1 и 2 электри-ческого поля воспользуемся связью между разностью потенциалов поля и напряженностью этого поля

(8)

и принципом суперпозиции электрических полей (потенциал результирующего электрического поля в точке равен алгебраической сумме потенциалов полей, создаваемых в этой точке отдельными зарядами).

Разность потенциалов между точками 1 и 2, создаваемая заряженной плоскостью, можно вычислить по формуле:

(9)

где x1 и x2 – кратчайшее расстояние от плоскости до точек 1 и 2;

Разность потенциалов между точками 1 и 2, создаваемая заряженной нитью, рассчитывается по уравнению:

(10)

где by и ay – кратчайшее расстояние от нити до точек 1 и 2; by = b sinα; ay = a sinα.

Разность потенциалов в точках 1 и 2, создаваемая точечным зарядом, вычисляется по выражению:

(11)

где r1 и r2 – кратчайшее расстояние от точечного заряда до точек 1 и 2; r1 = c – a = = 0,4 (м); r2 = c – b = 0,2 (м).

Результирующая разность потенциалов электрического поля между точками 1 и 2 в соответствии с принципом суперпозиции вычисляется по формуле:

(12)

Из-за громоздкости формулы (12) проведем вычисления слагаемых по отдельности:

Окончательный результат:

Ответ:

Задача 2. Два металлических шарика радиусом 10,0 и 50,0 мм заряжены: первый – до потенциала 600 В, а второй имеет заряд 3,00 нКл (рис. 2). Определить, насколько изменятся потенциалы шариков после их соединения.

 

Дано: СИ
 
q2
 
φ1  
а б Рис. 2
R1
R2
Решение.

 

 

R1 = 10 мм м
R2 = 50 мм м
φ1 = 600 В  
q2 = 3,00 нКл Кл
∆φ1 –? ∆φ2 –?  

 

 

Потенциал второго шарика до соединения вычисляют по формуле:

(1)

Так как потенциалы шариков разные, то после их соединения начнется перезарядка, которая будет продолжаться до тех пор, пока потенциалы шариков не уравняются:

(2)

Используя условие (2) и применяя закон сохранения электрического заряда, запишем:

(3)

Решая систему (3), получим:

(4)

Тогда, учитывая, что , запишем:

(5)

(6)

Проверяем единицу измерения:

Производим вычисления:

Ответ: потенциал первого шарика уменьшится на 50 В, а второго – возрастет на 10 В.

Задача 3. В схеме на рис. 3 ЭДС E1 = 2,00 В; E2 = 1,50 В; E3 = 3,00 В; E 4 = 4,50 В. Внутренние сопротивления всех источников одинаковы и равны 0,5 Ом. Сопротивления резисторов: R1 = 1,00 Ом; R2 = 2,00 Ом; R3 = 3,00 Ом. Найти силу тока во всех участках цепи. Какое количество тепла выделяется в резисторе R2 за одну минуту?

 

Дано: Решение.
I1
I2
I3
E1
E2
E3
E4
R1
R2
R3
А
В
С
Д
Рис. 3
+
+
+
+
-
-
-
-

 

E 1 = 2,00 В
E 2 = 1,50 В
E 3 = 3,00 В
E 4 = 4,50 В
r1 = r2 = r3 = r4 = 0,5 Ом
R1 = 1,00 Ом
R2 = 2,00 Ом
R3 = 3,00 Ом
t = 60 с
I1 -? I2 -? I3 -? Q2 -?

Так как электрическая цепь, приведенная на рис. 3, разветвленная, то для решения задачи нельзя использовать закон Ома для замкнутой цепи. Решаем задачу с помощью правил Кирхгофа.

Выбираем узел А, произвольно расставляем направление токов в подходящих к узлу проводах и записываем для него первое правило Кирхгофа: алгебраическая сумма токов, сходящихся в узле, равна нулю (токи, подходящие к узлу, берем со знаком «плюс», отходящие – со знаком «минус»):

(1)

Выбираем в цепи замкнутый контур – АВСА, указываем произвольно направление обхода контура и расставляем на источниках ЭДСстрелки, указывающие направление переноса заряда сторонними силами внутри источников (от «минуса» - к «плюсу»). Записываем для этого контура второе правило Кирхгофа: алгебраическая сумма снижения напряжения в замкнутом контуре равна алгебраической сумме ЭДС, действующих в этом контуре (если направление тока на сопротивлении совпадает с направлением обхода в контуре, то падение напряжения на этом сопротивлении имеет знак «плюс», если не совпадает – знак «минус»; если направление стрелки у ЭДС совпадает с направлением обхода контура, то перед ЭДС ставим знак «плюс», если противоположно – знак «минус»):

(2)

Выбираем другой замкнутый контур – ACDA – и аналогично записываем для него второе правило Кирхгофа:

(3)

Для нахождения силы тока в участках цепи необходимо решить систему трех линейных уравнений:

(4)

Решаем систему методом Крамера:

(5)

Проверка по первому закону Кирхгофа:

Количество тепла, выделяемого при прохождении тока по проводнику R2, вычислим по закону Джоуля – Ленца:

(6)

Ответ: I1 = 0,165 A; I2 = -0,101 A; I3 = 0,064 A; Q2 = 1,23 Дж.

Задача 4. По контуру в виде равностороннего треугольника со стороной 200 мм течет ток силой 15,0 А. Перпендикулярно плоскости контура проходят два бесконечно длинных прямых изолированных проводника, в которых протекают токи силой в 30,0 А в противоположных направлениях. Проводники проходят через две вершины треугольника. Найти величину и направление индукции магнитного поля в точке пересечения высот треугольника.

Дано: СИ

Решение.

X
Y
 
 
 
 
I1
I2
I3
I1
I1
Рис. 4
.
r1
r1
r1

 

a = 200 мм 0,2 м
I1 = 15,0 A  
I2 = I3 = 30,0 A  
 

r2
r3

 


Магнитное поле создается замкнутым контуром, состоящим из трех проводников конечной длины, и двумя бесконечно длинными проводниками. Определяем с помощью «правила буравчика» направление индукции магнитного поля, создаваемого каждым проводником в центре треугольника (рис. 4) и на основании принципа суперпозиции магнитных полей записываем:

(1)

где , и - магнитная индукция поля проводников конечной длины замкнутого контура с током I1;

и - магнитная индукция полей бесконечно длинных проводников с токами I2 и I3.

Для записи векторного уравнения (1) в скалярной форме выбираем удобную инерциальную систему отсчета (см. рис. 4, ось OZ – на нас) и находим проекции всех векторов на координатные оси:

(2)

 

Магнитную индукцию поля, создаваемого каждой стороной треугольного контура, вычислим по формуле:

(3)

где - кратчайшее расстояние от проводника с током I1 до центра треугольника;

Тогда

(4)

Магнитную индукцию поля, создаваемого бесконечно длинными проводниками, вычислим по формулам:

(5)

(6)

где r2 = r3 – радиус описанной окружности.

С учетом формул (5), (6) получим:

(7)

(8)

(так как I2 = I3).

Проверяем единицы измерения:

Производим вычисления:

Значение результирующей магнитной индукции поля в центре рассчитаем по формуле:

(9)

Ответ:

Задача 5. В однородном горизонтальном магнитном поле находится прямолинейный медный проводник с током 20,0 А, расположенный горизонтально и перпендикулярно полю. Какова должна быть магнитная индукция поля, чтобы проводник, имеющий поперечное сечение 2,00 мм2, находился в равновесии?

Дано: СИ
 
I
Y
Рис. 5
.
Решение.

 

 

I = 20,0 A  
S = 2,00 мм2
ρ = 8900 кг/м3  
В –?  

 

 

На проводник с током (рис. 5) действует сила тяжести (со стороны Земли) и сила Ампера (со стороны магнитного поля). Чтобы проводник находился в равновесии, сила должна быть направлена против и должна быть равной ей по величине:

(1)

В проекции на ось ОУ имеем:

(2)

где

ρ - плотность материала проводника (медь);

V = Sl - объем проводника, находящегося в магнитном поле;

α = 90º - угол между направлениями магнитной индукции и тока в проводнике.

С учетом изложенного выше получим:

(3)

Проверяем единицу измерения:

Производим вычисления:

Ответ: В = 8,7 мТл.

Задача 6. Рамка площадью 60,0 см2, имеющая 200 витков, равномерно вращается с частотой 5,00 об/с в однородном магнитном поле с индукцией 0,50 Тл. Ось вращения лежит в плоскости рамки и перпендикулярна линиям магнитной индукции. Сопротивление витков рамки равно 12 Ом. Определить мгновенное значение ЭДС индукции, соответствующее углу поворота рамки в 30º, и максимальный ток, индуцируемый в рамке. В начальный момент времени плоскость рамки перпендикулярна магнитному полю.

 

Дано: СИ Решение.
Рис. 6
α
S

 

N = 200  
S = 60,0 см2
ν = 5,00 об/с  
B = 0,5 Тл  
R = 12,0 Ом  
α1 = 30º  
Ei -? Ii max -?  

При вращении рамки в магнитном поле (рис. 6) меняется потокосцепление с рамкой, вследствие чего в рамке согласно явлению электромагнитной индукции индуцируется ЭДС индукции, мгновенное значение которой определяется по основному закону электромагнитной индукции (по закону Фарадея – Ленца):

(1)

где N – число витков в рамке.

Магнитный поток через рамку

(2)

При равномерном вращении рамки угол поворота рамки изменяется по закону:

(3)

где - циклическая (круговая) частота вращения, с-1;

- линейная частота вращения, об/с.

С учетом уравнений (2) и (3) получим выражение для расчета ЭДС индукции:

(4)

Проверяем единицу измерения:

Вычисляем мгновенное значение ЭДС индукции, соответствующее углу поворота рамки α1 = 30º:

Величину индукционного тока в рамке можно найти, воспользовавшись

законом Ома:

(5)

Максимальное значение Ii max будет соответствовать максимальному значению синуса: , тогда

(6)


Производим вычисления:

Ответ: Ei = 9,42 В; Ii max = 1,57 А.

Задача 7. В идеальном колебательном контуре индуктивность катушки равна 100 мГн, а амплитуда колебаний силы тока в цепи – 20 А. Найти энергию электрического поля конденсатора и магнитного поля катушки в тот момент времени, когда мгновенное значение силы тока в два раза меньше амплитудного значения.

Дано: СИ Решение. Полная энергия идеального колебательного контура складывается из энергии электрического и магнитного полей: (1)
L = 100 мГн 0,1 Гн
I0 = 20 мА 0,2 A
i = I0/2  
We –? Wm –?  

В идеальном колебательном контуре отсутствует диссипация энергии, поэтому полную энергию можно вычислить через максимальные значения энергии электрического или магнитного поля:

(2)

Энергия магнитного поля для момента времени, когда i = I0/2,

(3)

Тогда энергия электрического поля конденсатора

(4)

Производим вычисления:

Ответ: We = 15 мкДж; Wm = 5 мкДж.

З а д а ч а 8. Амплитуда затухающих колебаний математического маятника длиной 800 мм уменьшилась в два раза за 3 мин. Чему равна добротность этого осциллятора?

Дано: СИ Решение. Добротностью осциллятора называется увеличенное в 2π раз отношение энергии, первоначально запасенной осциллятором, к потерям энергии за один период: . (1)
l = 800 мм 0,8 м
t1 = 3 мин 180 с
A0/A = 2  
t2 = T  
Q –?  

При затухающих колебаниях амплитуда и энергия убывают по законам:

(2)

(3)

где β – коэффициент затухания осциллятора, который можно найти из соотно-шения:

(4)

Тогда потеря энергии осциллятором за один период

(5)

Период затухающих колебаний математического маятника

(6)

а так как << , то это случай слабозатухающих колебаний.

Тогда окончательно имеем:

(7)

Производим вычисления:

Ответ: Q = 458.


ТАБЛИЦА ВАРИАНТОВ И НОМЕРА ЗАДАЧ К КОНТРОЛЬНОЙ РАБОТЕ № 2

 

Вариант   Номера задач Вариант   Номера задач
                               
                                   
                                   
                                   
                                   
                                   

 

ЗАДАЧИ




<== предыдущая лекция | следующая лекция ==>
Приложение А. Классификация терминов «Инкотермс – 2010» | Фонетическое непонимание возникает

Дата добавления: 2015-09-19; просмотров: 383. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия