Необходимые требования к теплоизоляционным материалам
Температуростойкость - это весьма ценное свойство ТИМ, особенно при использовании их для изоляции промышленного оборудования, работающего при высоких температурах. Температуростойкость материалов характеризуют техническая и экономическая предельные температуры применения. Под технической температурой понимают ту, при которой материал может эксплуатироваться без изменения его технических свойств. Паропроницаемость. ТИМ с сообщающимися открытыми порами пропускают значительное количество водяного пара — почти столько же, сколько воздуха. Благодаря малому сопротивлению паропроницаемости они почти всегда остаются сухими: в основном пар конденсируется в следующем слое, на более холодной стороне. Во избежание конденсации водяного пара теплая сторона должна обладать большей паронепроницаемостью, чем холодная, а также воздухонепроницаемостью. Воздухонепроницаемость. Мягкие изоляционные материалы настолько хорошо пропускают воздух, что движение воздуха приходится предотвращать путем применения отдельной ветрозащиты. Жесткие изделия в свою очередь обладают хорошей воздухонепроницаемостью и не нуждаются в каких-либо специальных мерах защиты. Они могут применяться также в качестве ветрозащиты. Химическая стойкость. Теплоизоляционные материалы должны обладать хорошей стойкостью к действию органических веществ. В промышленности теплоизоляционный материал является важным элементом конструкции изолируемых сооружений и оборудования, поскольку, обычно, выполняет не только свою традиционную роль – снижение потерь тепловой энергии в окружающую среду, но также, в большинстве случаев, обеспечивает соблюдение требуемых тепловых режимов конструкций оборудования и технологического режима, им реализуемого. Поэтому эффективность использования теплоизоляционного материала определяется не только ее высокими теплоизолирующими свойствами, но и стабильностью теплозащитных свойств теплоизоляционных конструкций в процессе эксплуатации. Наиболее экономичным видом прокладки теплопроводов тепловых сетей является надземная прокладка. Однако с учетом архитектурно-планировочных требований, требований экологии в населенных пунктах основным видом прокладки является подземная прокладка в проходных, полупроходных и непроходных каналах. Бесканальные теплопроводы, являясь более экономичными в сравнении с канальной прокладкой по капитальным затратам на их сооружение, применяются в тех случаях, когда они по теплотехнической эффективности и долговечности не уступают теплопроводам в непроходных каналах. Проектирование тепловых сетей всех способов прокладки осуществляется в соответствии с требованиями СНиП 2.04.07-86* «Тепловые сети». Требования к конструкциям тепловой изоляции и нормы плотности теплового потока от теплоизолированных трубопроводов в зависимости от диаметра трубопровода, температуры теплоносителя и вида прокладки (надземная или подземная) регламентируются СНиП 2.04.14-88 «Тепловая изоляция оборудования и трубопроводов» с изменением № 1. Тепловая изоляция предусматривается для линейных участков трубопроводов тепловых сетей, арматуры, фланцевых соединений, компенсаторов и опор труб для надземной, подземной канальной и бесканальной прокладки. При выборе материалов теплоизоляционных конструкций трубопроводов, прокладываемых в жилых, общественных и производственных зданиях и проходных тоннелях, следует учитывать требования норм проектирования на эти объекты в части пожарной опасности. Для изоляции арматуры, сальниковых компенсаторов и фланцевых соединений следует применять преимущественно съемные теплоизоляционные конструкции. В качестве теплоизоляционного слоя в этих конструкциях наибольшее применение в практике находят теплоизоляционные изделия на основе минерального и стеклянного волокна, выпускаемые различными предприятиями по ГОСТ 21880-94, ГОСТ 9573-96, ГОСТ 10499-95 и Техническим условиям (ТУ) производителей. Эффективными теплоизоляционными изделиями для прокладываемых в каналах трубопроводов тепловых сетей являются цилиндры из минеральной ваты и стекловолокна. Минеральная вата относится к негорючим материалам (группа горючести НГ). Имеет самый широкий температурный диапазон применения (от минус 180 до плюс 500°С), долговечна, но неудобна при монтаже и требует дополнительного пароизоляционного слоя. Большим недостатком минеральной ваты является то, что при попадании влаги в разрыв пароизоляционного слоя появляется промерзание изоляции, которое постепенно распространяется. Таким образом, разрыв в одном месте приводит к промерзанию всей тепловой изоляции, изоляция теряет эффективность и требует замены. Минеральной ватой очень сложно производить тепловую изоляцию фасонных частей и арматуры, герметизация многочисленных швов практически не осуществима. Кроме того, работа с минеральной ватой вредна для здоровья из-за наличия волокон и пыли, теплоизоляционные работы необходимо производить в респираторе. Поэтому теплоизоляционные работы с минеральной ватой производят высококвалифицированные бригады рабочих. Современная минеральная вата каширована (усилена) алюминиевой фольгой, отражающей тепловое излучение и являющейся дополнительным слоем пароизоляции и механической защиты. В маты укладывают металлическую или полимерную сетку, облегчающую монтаж. В качестве основного теплоизоляционного слоя в конструкциях теплоизолированных трубопроводов бесканальной прокладки по СНиП 2.04.07-86* и СНиП 2.04.14-88 рекомендуется применять армопенобетон (АПБ), пенополимерминерал (полимербетон) и пенополиуретан (ППУ). Вспененный полиэтилен имеет группу горючести Г2 (умеренно горючий), применяется для холодильных установок, изоляции трубопроводов, баков хладоносителя и воды. Вспененный полиэтилен имеет полностью закрытую пору, т. е. повреждение в одном месте не приведет к проникновению влаги в изоляцию. Серьезным недостатком вспененного полиэтилена является его температурная деформация, т. е. разрушение при температурах свыше 90°С. При укладке вспененный полиэтилен приходится накладывать сжатым в продольном направлении до появления складок, иначе при температурных деформациях трубопроводов в местах стыков полиэтилен порвется. Большим достоинством является низкая стоимость тепловой изоляции из вспененного полиэтилена отечественного производства. Для изоляции крупных сосудов и аппаратов в помещениях категории Д, трубопроводов хладоносителя и воды вспененный полиэтилен следует применять, так как это снизит затраты на тепловую изоляцию. Невзирая на толщину до 50 мм вспененный полиэтилен плохо защищает от образования конденсата, охрупчивается при низких температурах. В попытках улучшить свойства вспененного полиэтилена к нему добавляют вспененный каучук, но подобные материалы практически полностью имеют недостатки вспененного полиэтилена и приближаются по стоимости к вспененному каучуку. Вспененный каучук применим для тепловой изоляции любых холодильных установок, имеет класс пожарной опасности П (слабогорючий).
Для трубопроводов тепловых сетей подземной бесканальной прокладки применяются преимущественно предварительно изолированные в заводских условиях трубы с гидроизоляционным покрытием, исключающим возможность увлажнения изоляции в процессе эксплуатации. Практические расчеты тепловой изоляции трубопроводов в канале и при бесканальной прокладке выполняются с удовлетворительной для практики точностью по инженерным методикам, учитывающим термическое сопротивление теплоизоляционного слоя и термическое сопротивление стенок канала и грунта, сопротивление теплоотдаче на границе теплоизоляции и стенок канала с воздухом в канале. Термическое сопротивление грунта рассчитывается по формуле Форхгеймера, учитывающей теплопроводность грунта в условиях эксплуатации, диаметр теплопровода и глубину его заложения. При двухтрубной прокладке учитывается взаимное тепловое влияние подающего и обратного теплопровода. В практике проектирования тепловых сетей при двухтрубной прокладке трубопроводов одного диаметра толщина теплоизоляционного слоя обратного трубопровода с учетом монтажных требований принимается равной толщине теплоизоляции подающего трубопровода. Экономически оптимальная толщина теплоизоляционного слоя для заданного типа прокладки определяется по минимуму суммы капитальных затрат на устройство изоляции и эксплуатационных расходов с учетом стоимости используемых материалов и тепловой энергии в конкретном регионе. Стоимостные показатели рекомендуемых к применению теплоизоляционных материалов являются одним из определяющих факторов при оценке их сравнительной технико-экономической эффективности.
|