Студопедия — Перевод десятичных дробей в двоичную систему счисления
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Перевод десятичных дробей в двоичную систему счисления





 

а) из 10–ой с/с в 2–ую систему счисления: 165; 541; 600; 720; 43,15; 234,99.

 

б) из 2–ой в 10–ую систему счисления: 1101012; 110111012; 1100010112; 1001001,1112

 

в) из 2–ой с/с в 8–ую,16–ую с/с:

1001011102; 1000001112; 1110010112; 10110010112; 1100110010112; 10101,101012; 111,0112

 

г) из 10–ой с/с в 8–ую, 16–ую с/с: 69; 73; 113; 203; 351; 641; 478,99; 555,555

 

д) из 8–ой с/с в 10–ую с/с: 358; 658; 2158; 3278; 5328; 7518; 45,4548

 

е) из 16–ой с/с в 10–ую с/с: D816; 1AE16; E5716; 8E516; FAD16; AFF,6A716

 

2. Выпишите целые десятичные числа, принадлежащие следующим чсловым промежуткам:

 

[101012; 1100002]; [148; 208]; [1816; 3016]

 

3. Выполнить операции:

а) сложение в двоичной системе счисления

+ 100100112 + 10111012 + 101100112 +10111001,12

10110112 111011012 10101012 10001101,12

 

б) вычитание в 2–ой системе счисления

– 1000010002 – 1101011102 – 111011102 -10111001,12

101100112 101111112 10110112 10001101,12

 

в) умножение в 2–ой системе счисления

´ 1000012 ´ 1001012 ´ 1111012 ´ 11001,012

1111112 1110112 1111012 11,012

 

г) деление в 2–ой системе счисления

1) 1110100010012 / 1111012

2) 1000110111002 / 1101102

3) 100000011112 / 1111112

 

д) сложение 8–ых чисел

+ 7158 + 5248 + 7128 + 3218 + 57318 + 63518

738 578 7638 7658 13768 7378

 

е) вычитание 8–ых чисел

– 1378 – 4368 – 7058 – 5388 – 72138

728 1378 768 578 5378

 

ж) сложение 16–ых чисел

+ А1316 + F0B16 + 2EA16 + ABC16 + A2B16

16F16 1DA16 FCE16 C7C16 7F216

 

з) вычитание 16–ых чисел

– À1716 – DFA16 – FO516 – DE516 – D3C116

1FС16 1AE16 AD16 AF16 D1F16

 

4. Вычислите выражение:

 

(11111012 + AF16) / 368; 1258 + 111012 ´ A216 / 14178

Лабораторная работа №1

Тема: Система счисления. Перевод целых десятичных чисел в двоичную, восьмеричную, шестнадцатиричную систему счисления. (1 час), СРСП(1 час).

Десятичная система счисления

Название «десятичная» объясняется тем, что в основе этой системы лежит основание десять. В этой системе для записи чисел используются десять цифр - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Десятичная система является позиционной, так как значение цифры в записи десятичного числа зависит от ее позиции, или местоположения, в числе.

Позицию, отводимую для цифры числа, называют разрядом.

Например, запись 526 означает, что число состоит из 5 сотен, 2 десятков и 6 единиц, Цифра 6 стоит в разряде единиц. Цифра 2 - в разряде десятков цифра 5-в разряде сотен.

Это число записать в виде суммы:

526=5*102+2*101+6*100

в этой записи число 10-основание системы счисления. Для каждой цифры числа основание 10 возводится в степень, зависящую от позиции цифры, и умножается на эту цифру. Степень основания для единиц равна нулю, для десятков - единице, для сотен – двум и т.д.

Для записи десятичных дробей используются отрицатель­ные значения степеней основания. Например, число 555,55 в развернутой форме записывается следующим образом:

555,5510 = 5*102 + 5*101+ 5*10°+ 5*10-1+5*10-2.:

Перевод целых десятичных чисел в двоичную систему счисления.

При переводе десятичного числа в двоичное нужно это число делить на 2. Чтобы перевести целое положительное десятичное число в двоичную систему счисления, нужно это число разделить на 2. Полученное частное снова разделить на 2 и т.д. до тех пор, пока частное не окажется меньше 2. В результате записать в одну строку последнее частное и все остатки, начиная с последнего.

Пример. Число 891 перевести из десятичной системы в двоичную систему счисления.

Решение:

891:2=445, 1

445:2=222, 1

222:2=111, 0

111:2=55, 1

55:2=27, 1

27:2=13, 1

13:2=6, 1

6:2=3, 0

3:2=1, 1

1:2=0, 1 (старшая цифра двоичного числа)

 

Записываем в одну строку последнее частное и все остатки, начиная с последнего.

Ответ: 89110=11011110112

Перевод десятичных дробей в двоичную систему счисления

Перевод десятичных дробей в двоичную систему счисления заключается в поиске целых частей при умножении на 2.

Пример. Переведем десятичную дробь 0,322 в двоичную систему счисления.

Чтобы найти первую после запятой цифру двоичной дроби, нужно умножить заданное число на 2 и выделить целую часть произведения.

Решение:

0,32210 8,8310

0.322*2=0.644 0 8:2=4 остаток 0

0.644*2=1.288 1 4:2=2 остаток 0

0.288*2=0.576 0 2:2=1 остаток 0

0.576*2=1.152 1 1:2=0 остаток 1

Ответ:

0,322210=0.01012 0.83*2=1.66 целая часть равна 1

0.66*2=1.32 целая часть равна 1

0.32*2=0.64 целая часть равна 0

0.64*2=1.28 целая часть равна 1

Ответ: 8,83=1000,1101







Дата добавления: 2015-09-18; просмотров: 2943. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия