Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Первичная обработка





На первой стадии «сырые» сведения группируются по тем или иным критериям, заносятся в сводные таблицы, а для наглядного представления данных строятся различные диаграммы и графики. Все эти манипуляции позволяют, во-первых, обнаружить и ликвидировать ошибки, совершенные при фиксации данных, и, во-вторых, выявить и изъять из общего массива нелепые данные, полученные в результате нарушения процедуры обследования, несоблюдения испытуемыми инструкции и т. п. Кроме того, первично обработанные данные, представая в удобной для обозрения форме, дают исследователю в первом приближении представление о характере всей совокупности данных в целом: об их однородности–неоднородности, компактности-разбросанности, четкости–размытости и т. д. Эта информация хорошо читается на наглядных формах представления данных и связана с понятием «распределение данных».

Под распределением данных понимается их разнесенность по категориям выраженности исследуемого качества (признака). Разнесенность по категориям показывает, как часто (или редко) в определенном массиве данных встречаются те или иные показатели изучаемого признака. Поэтому такой вид представления данных называют «распределением частот». Выраженность признака, как видели выше, может быть представлена в оценках: «есть – нет» или «равно – неравно» (номинативные данные), «больше – меньше» (порядковые данные), «настолько-то больше или меньше» (интервальные данные), «во столько-то раз больше или меньше» (пропорциональные данные). Первая категория оценок предполагает явную дискретность выраженности изучаемого признака, остальные – непрерывность (хотя бы теоретически). Проиллюстрируем это примерами.

Пример для дискретных данных

В трехтысячном трудовом коллективе были выбраны сто человек, которые давали ответ на вопрос: «какой цвет вы предпочитаете?». Предлагалось 6 вариантов: белый (Б), черный (Ч), красный (К), синий (С), зеленый (3), желтый (Ж). В данном случае каждый цвет – это самостоятельная категория выраженности признака «окраска». Допустим, цель – выбор дизайнером окраски рабочих помещений, где трудятся эти люди. Итоги опроса, зафиксированные в протоколе, подсчитали и занесли в таблицу 1 (табулировали).

Таблица 1

Итоги опроса

Цвет Количество выборов
Абсолютная частота Относительная частота %
Б   0,08  
Ч   0,06  
К   0,21  
С   0,20  
З   0,34  
Ж   0,11  
Сумма   1,00  

 

Частота (абсолютная частота) – это число ответов данной категории в выборке, частость (относительная частота) – это отношение частоты ко всей выборке. Под выборкой понимается все множество полученных в исследовании значений изучаемого признака (свойства, качества, состояния) объекта. В нашем примере выборка равна 100. Понятие выборки связано с понятием генеральной совокупности (или популяции),которая представляет собой все возможное множество значений изучаемого признака. В нашем примере она равна 3000. Поскольку даже ограниченные популяции обычно весьма велики, то опыты проводятся только на выборках. Поэтому встает вопрос о репрезентативности выборки, т. е. о том, можно ли результаты, полученные на выборке, переносить на всю совокупность. Для этого привлекают статистические методы доказательства репрезентативности. Таким образом, выборка есть часть генеральной совокупности. Краткое описание этих множеств производится с помощью так называемых описательных мер (мер центральной тенденции, разброса и связи), вычисление которых производится при вторичной обработке данных. Значения мер, вычисленные для генеральных совокупностей, называются параметрами,для выборок – статистиками. Параметр описывает генеральную совокупность также, как статистика – выборку. Принято обозначать статистики латинскими буквами, а параметры – греческими. Правда, в психологических исследованиях этих правил не всегда строго придерживаются.

На основании табличных данных можно построить диаграмму,где распределение представлено нагляднее:

Пример для непрерывных данных

Данные непрерывного характера можно представить веще более наглядной форме: в виде гистограмм, полигонов икривых.

В опытах В. К. Гайды, описанных в учебном пособии для студентов-психологов [76, с. 23-25], участвовало 96 испытуемых. Определялся цвет последовательного образа восприятия насыщенного красного цвета. С этой целью каждый испытуемый в течение одной минуты рассматривал окрашенный в красный цвет образец, а затем переносил взгляд на белый экран, где видел круг в дополнительных цветах. Рядом с ним находился цветовой круг с разноокрашенными секторами, на котором испытуемый должен был выбрать тот цвет, который соответствовал цвету возникшего у него последовательного образа. При этом испытуемый не называл цвет, а лишь его номер в цветовом круге. Цветовой круг нормирован таким образом, что соседние цвета отличаются в нем друг от друга на одинаково замечаемую величину. Следовательно, цветовой круг можно рассматривать как интервальную шкалу. Наряду с этим цветовой круг характеризуется и еще одним свойством. В частности, можно себе представить, что между двумя соседними цветами, например между зеленовато-голубым и голубовато-зеленым, имеется еще множество не замечаемых человеческим глазом цветовых переходов. В этом смысле цветовой круг представляет собой пример непрерывной переменной. Фактически же испытуемые всегда выделяют конечное число цветовых оттенков и поэтому свой выбор останавливают на конкретном номере (или названии) цвета. В рассматриваемом эксперименте испытуемые определяли свой последовательный образ в диапазоне от № 16 – зеленовато-голубой цвет до № 23 – желтовато-зеленый. Полученные данные можно табулировать, что и сделано в таблице 2.

Таблица 2

Последовательный образ Частота выбора цвета образа
   
   
   
   
   
   
   
   
Σ  

 

Как видно, в построении таблиц 1 и 2 нет принципиального различия. Но разница в характере первичных данных, отображенных в обеих таблицах, все же есть, и она обнаруживается при их графическом изображении. В самом деле, рис. 2 представляет собой уже не столбиковую, а ступенчатую диаграмму, называемую гистограммой. Следует обратить внимание на то, что все участки (столбики) ступенчатой диаграммы расположены вплотную друг к другу (числовые переменные на оси абсцисс гистограммы пишут против центральной оси каждого участка).

От гистограммы легко перейти к построению частотного полигона распределения,а от последнего – к кривой распределения. Частотный полигон строят, соединяя прямыми отрезками верхние точки центральных осей всех участков ступенчатой диаграммы (рис. 3). Если же вершины участков соединить с помощью плавных кривых линий, то получится кривая распределения первичных результатов (рис. 4).

Переход от гистограммы к кривой распределения позволяет путем интерполяции находить те величины исследуемой переменной, которые в опыте не были получены.







Дата добавления: 2015-09-18; просмотров: 350. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия