Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ограничения критерия





1.Объем выборки должен быть достаточно большим: п 30. При п <30 критерий χ2 дает весьма приближенные значения. Точность крите­рия повышается при больших п.

2. Теоретическая частота для каждой ячейки таблицы не должна быть меньше 5: f > 5. Это означает, что если число разрядов задано зара­нее и не может быть изменено, то мы не можем применять метод χ2, не накопив определенного минимального числа наблюдений. Ес­ли, например, мы хотим проверить наши предположения о том, что частота обращений в телефонную службу Доверия неравномерно распределяются по 7 дням недели, то нам потребуется 5*7=35 обращений. Таким образом, если количество разрядов (k) задано заранее, как в данном случае, минимальное число наблюдений (nmin) определяется по формуле: nmin= k *5.

3. Выбранные разряды должны "вычерпывать" все распределение, то есть охватывать весь диапазон вариативности признаков. При этом группировка на разряды должна быть одинаковой во всех сопостав­ляемых распределениях.

4. Необходимо вносить "поправку на непрерывность" при сопоставле­нии распределений признаков, которые принимают всего 2 значения. При внесении поправки значение χ2 уменьшается (см. Пример с по­ правкой на непрерывность).

5. Разряды должны быть неперекрещивающимися: если наблюдение отнесено к одному разряду, то оно уже не может быть отнесено ни к какому другому разряду.

Сумма наблюдений по разрядам всегда должна быть равна общему количеству наблюдений.

Правомерен вопрос о том, что считать числом наблюдений - количество выбо­ров, реакций, действий или количество испытуемых, которые совершают выбор, проявляют реакции или производят действия. Если испытуемый проявляет не­сколько реакций, и все они регистрируются, то количество испытуемых не будет совпадать с количеством реакций. Мы можем просуммировать реакции каждого испытуемого, как, например, это делается в методике Хекхаузена для исследования мотивации достижения или в Тесте фрустрационной толерантности С. Розенцвейга, и сравнивать распределения индивидуальных сумм реакций в нескольких выборках.

В этом случае числом наблюдений будет количество испытуемых. Если же мы подсчитываем частоту реакций определенного типа в целом по выборке, то получа­ем распределение реакций разного типа, и в этом случае количеством наблюдений будет общее количество зарегистрированных реакций, а не количество испытуемых.

С математической точки зрения правило независимости разрядов соблюдается в обоих случаях: одно наблюдение относится к одному и только одному разряду распределения.

- Можно представить себе и такой вариант исследования, где мы изучаем рас­пределение выборов одного испытуемого. В когнитивно-бихевиоральной терапии, например, клиенту предлагается всякий раз фиксировать точной время появления нежелательной реакции, например, приступов страха, депрессии, вспышек гнева, самоуничижающих мыслей и т. п. В дальнейшем психотерапевт анализирует полу­ченные данные, выявляя часы, в которые неблагоприятные симптомы проявляются чаще, и помогает клиенту строить индивидуальную программу предупреждения неблагоприятных реакций.

Можно ли с помощью критерия χ2доказать, что некоторые часы являются в этом индивидуальном распределении более часто встречающимися, а другие - ме­нее часто встречающимися? Все наблюдения - зависимы, так как они относятся к одному и тому же испытуемому; в то же время все разряды - неперекрещивающиеся, так как один и тот же приступ относится к одному и только одному разря­ду (в данном случае - часу дня). По-видимому, применение метода χ2 будет в данном случае некоторым упрощением. Приступы страха, гнева или депрессии могут наступать неоднократно в течение дня, и может оказаться так, что, скажем, ранний утренний, 6-часовой, и поздний вечерний, 12-часовой, приступы обычно появляются вместе, в один и тот же день: в то же время дневной 3-часовой при­ступ появляется не ранее как через сутки после предыдущего приступа и не менее чем за двое суток до следующего и т. п. По-видимому, речь здесь может идти о сложной математической модели или вообще о чем-то таком, чего нельзя "поверить алгеброй". И тем не менее в практических целях может оказаться полезным ис­пользовать критерий для того, чтобы выявить систематическую неравномерность наступления каких-либо значимых событий, выбора, предпочтений и т. п. у одного и того же человека.

Итак, одно и то же наблюдение должно относиться только к одному разряду. Но считать ли наблюдением каждого испытуемого или каждую исследуемую реак­цию испытуемого - вопрос, решение которого зависит от целей исследования (см.. напр., Ганзен В.А., Балин В.Д., 1991, с.10).

Главное же "ограничение" критерия χ2 - то, что он кажется большинству исследователей пугающе сложным.

Попытаемся преодолеть миф о непостижимой трудности критерия χ2. Чтобы оживить изложение, рассмотрим шутливый литературный пример.







Дата добавления: 2015-09-18; просмотров: 333. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия