Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример 1: Сопоставление эмпирического распределения с теоретическим





Ввыборке здоровых лиц мужского пола, студентов технических и военно-технических вузов в возрасте от 19-ти до 22 лет, средний воз­раст 20 лет, проводился тест Люшера в 8-цветном варианте. Установ­лено, что желтый цвет предпочитается испытуемыми чаще, чем отверга­ется (Табл. 4.16). Можно ли утверждать, что распределение желтого цвета по 8-и позициям у здоровых испытуемых отличается от равно­мерного распределения?

Таблица 4.16

Эмпирические частоты попадания желтого цвета на каждую из 8 позиций (n =102)

Сформулируем гипотезы.

H0: Эмпирическое распределение желтого цвета по восьми позициям не отличается от равномерного распределения.

H1: Эмпирическое распределение желтого цвета по восьми позициям отличается от равномерного распределения.

Теперь приступим к расчетам, постепенно заполняя результатами таблицу расчета критерия λ. Все операции лучше прослеживать по Табл. 4.17, тогда они будут более понятными.

Занесем в таблицу наименования (номера) разрядов и соответст­вующие им эмпирические частоты (первый столбец Табл. 4.17). Затем рассчитаем эмпирические частости f * по формуле:

f*j = fj /n

где fj - частота попадания желтого цвета на данную позицию;

n - общее количество наблюдений; j - номер позиции по порядку.

Запишем результаты во второй столбец (см. Табл. 4.17). Теперь нам нужно подсчитать накопленные эмпирические часто­сти Σ f *. Для этого будем суммировать эмпирические частости f *. На­пример, для 1-го разряда накопленная эмпирическая частость будет равняться эмпирической частости 1-го разряда, Σ f *1=0,235[20].

Для 2-го разряда накопленная эмпирическая частость будет пред­ставлять собой сумму эмпирических частостей 1-го и 2-го разрядов:

Σ f *1+2=0,235+0,147=0,382

Для 3-го разряда накопленная эмпирическая частость будет пред­ставлять собой сумму эмпирических частостей 1-го, 2-го и 3-го разрядов:

Σ f*1 +2+3=0,235+0,147+0,128=0,510

Мы видим, что можно упростить задачу, суммируя накопленную эмпирическую частость предыдущего разряда эмпирической частостью данного разряда, например, для 4-го разряда:

Σ f *1+2+3+4=0,510+0,078=0,588

Запишем результаты этой работы в третий столбец.

Теперь нам необходимо сопоставить накопленные эмпирические частости с накопленными теоретическими частостями. Для 1-го разряда теоретическая частость определяется по формуле:

где k - количество разрядов (в данном случае - позиций цвета).

Для рассматриваемого примера:

f *теор=1/8=0,125

Эта теоретическая частость относится ко всем 8-и разрядам. Действительно, вероятность попадания желтого (или любого другого) цвета на каждую из 8-и позиций при случайном выборе составляет 1/8, т.е. 0,125.

Накопленные теоретические частости для каждого разряда опре­деляем суммированием. Для 1-го разряда накопленная теоретическая частость равна теоретической частости попадания в разряд:

f * т 1=0,125

Для 2-го разряда накопленная теоретическая частость представ­ляет собой сумму теоретических частостей 1-го и 2-го разрядов: f *т 1+2=0,125+0,125=0,250

Для 3-го разряда накопленная теоретическая частость представ­
ляет собой сумму накопленной к предыдущему разряду теоретической
частости с теоретической частостью данного разряда:

f *т 1+2+3=0,250+0,125=0,375

Можно определить теоретические накопленные частости и путем!
умножения:

S f * т j= f * теор j

где f *теор - теоретическая частость; j - порядковый номер разряда.

Занесем рассчитанные накопленные теоретические частости в четвертый столбец таблицы (Табл. 4.17).

Теперь нам осталось вычислить разности между эмпирическими и теоретическими накопленными частостями (столбцы 3-й и 4-й). В пя­тый столбец записываются абсолютные величины этих разностей, обо­значаемые как d.

Определим по столбцу 5, какая из абсолютных величин разности является наибольшей. Она будет называться dmax. В данном случае dmax=0,135.

Теперь нам нужно обратиться к Табл. X Приложения 1 для оп­ределения критических значений dmax при n =102.

Таблица 4.17

Расчет критерия при сопоставлении распределения выборов желтого цвета с равномерным распределением (n =102)

Очевидно, что чем больше различаются распределения, тем больше и различия в накопленных частостях. Поэтому нам не составит труда распределить зоны значимости и незначимости по соответствую­щей оси:

Очевидно, что чем больше различаются распределения, тем больше и различия в накопленных частостях. Поэтому нам не составит труда распределить зоны значимости и незначимости по соответствую­щей оси:

dэмп=0,135

dэмп=dкр.

Ответ: Н0 отвергается при р=0,05. Распределение желтого цве­та по восьми позициям отличается от равномерного распределения. Представим все выполненные действия в виде алгоритма







Дата добавления: 2015-09-18; просмотров: 362. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия