Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Глава 2.Выявление различий вуровне исследуемого признака 39





2.1. Обоснование задачи сопоставления и сравнения.... 39

2.2. Q - критерий Розенбаума........... 42

2.3. U - критерий Мачна-Уитни.......... 49

2.4. Н - критерий Крускала-Уоллиса........ 56

2.5. S - критерий тенденций Джонкира........ 61

2.6. Задачи для самостоятельной работы....... 69

2.7. Алгоритм принятия решения о выборе критерия для сопоставлений................ 71

Глава 3. Оценка достоверности сдвига в значениях

исследуемого признака.............. 72

3.1. Обоснование задачи исследования изменений..... 72

3.2. G - критерий знаков............ 77

3.3. Т - критерий Вилкоксона........... 87

3.4. Критерий X 2r Фридмана........... 94

3.5. L - критерий тенденций Пейджа........ 101

3.6. Задачи для самостоятельной работы....... 107

3.7. Алгоритм принятия решения о выборке критерия оценки изменении................. 109


Содержание 349

Глава 4. Выявление различий в распределении признака.. ПО

4.1. Обоснование задачи сравнения распределений признака. 110

4.2. x 2 " критерий Пирсона........... 113

4.3. Л - критерий Колмогорова-Смирнова....... 142

4.4. Задачи для самостоятельной работы....... 152

Алгоритм выбора критерия для сравнения распределений... 156

Глава 5. Многофункциональные статнстнческне критерии. 157

5.1. Понятие многофункциональных критериев...... 157

5.2. Критерий ф* - угловое преобразование Фишера.,. 158

5.3. Биномиальный критерий m.......... 177

5.4. Многофункциональные критерии как эффективные заменители традиционных критериев......... 187

5.5. Задачи для самостоятельной работы....... 194

5.6. Алгоритм выбора многофункциональных критериев... 197

5.7. Математическое сопровождение к описанию критерия

ф* Фишера................. 198

Глава 6. Метод ранговой корреляции........ 200

6.1. Обоснование задачи исследования согласованных изменений 200

6.2. Коэффициент ранговой корреляции г, Спирмена... 208 Глава 7. Дисперсионный анализ.......... 224

7.1. Понятие дисперсионного анализа........ 224

7.2. Подготовка данных к дисперсионному анализу.... 229

7.3. Однофакторный дисперсионный анализ для несвязанных выборок.................. 235

7.4. Однофакторный дисперсионный анализ для связанных выборок.................. 240

Глава 8. Дисперсионный двухфакторнын анализ..... 246

8.1. Обоснование задачи по оценке взаимодействиях двух факторов.................. 246

8.2. Двухфакторнын дисперсионный анализ для несвязанных выборок.................. 248

8.3. Двухфакторный дисперсионный анализ для связанных выборок.................. 253

Глава 9. Решения задач с комментариями....... 261

9.1. Рекомендации по решению задач........ 261

9.2. Решения задач 1 лавы ^........... 261

9.3. Решения задач Главы 3........... 270

9.4. Решения задач Главы 4........... 284

9.5. Решения задач Главы 5........... 301

Заключение................. 308

Библиография................. 309

Приложение 1. Таблицы критических значений..... 315

Приложение 2. Рекомендуемая литература....... 347

 

 


[1] "Каракатица" - ироническое обозначение корреляционной плеяды.

[2] Определения и формулы расчета М и СТ даны в параграфе "Распределение при­знака. Параметры распределения".

[3] О нормальном распределении см. Пояснения в п. 1.3.

[4] Определение и описание непараметрических критериев дано ниже в данной главе.

[5] О понятии мощности критерия см. ниже.

[6] с - количество выборок.

[7] Для крайнего правого столбца S1 не указываются, поскольку они равны нулю.

[8] Сдвиг - это разность между вторым и первым замерами. Сначала вычисляются разности отдельно для каждой из групп, а уж затем проводятся сопоставления двух рядов разностей (сдвигов), полученных в разных группах. Примером такого сопоставления сдвигов в ощущении психологической дистанции является Задача 1.

[9] Критерий знаков с математической точки зрения является частным случаем би­номиального критерий для двух равновероятных альтернатив. При вероятности каждой из альтернатив P=Q=0,50 критерий знаков является зеркальным отраже­нием биномиального критерия (см. параграф 5.3). В некоторых руководствах кри­терий знаков называют критерием Мак-Немара (McCall R., 1970; Рунион Р., 1982).

[10] Можно вычитать значения "после" из значений "до", это никак не повлияет на расчет критерия. Но лучше во всех случаях придерживаться одной системы, чтобы не запутаться самим.

[11] *Испытуемый Л-в так и не смог правильно решить анаграмму 2. |4 Е. В. Сидоренко

[12] На самом деле области применения критерия %2 многообразны (см., например: Суходольский Г.В., 1972, с. 295), но в данном руководстве мы ограничиваемся только этими двумя, наиболее часто встречающимися на практике, целями.

[13] Доброхотова Т. А., Брагина Н. Н. Левши. М.: "Книга", 1994.

[14] Гистограмма - это диаграмма, в которой различная величина частот изображается различной высотой столбиков (Плохинский Н. А., 1970, с. 14.)

[15] Все приведенные эмпирические частоты на самом деле пропорциональны количе­ству благосклонных высказываний невесты о женихах в тексте пьесы.

[16] Поправка на непрерывность при ν=l предназначена для корректировки несоот­ветствия между дискретным биномиальным распределением и непрерывным рас пределением (Рунион Р., 1982, с. 39.)

[17] Социальный атом "... состоит из всех отношений между человеком и окружающими его людьми, которые в данный момент тем или иным образом с ним связаны" (Moreno J. L., 1951.)

[18] Целесообразно было бы проверить совпадение распределения ошибок в обеих выборках с распределением Пуассона. Закону Пуассона подчиняются распределе­ния редких событий, приходящихся 0, 1, 2,... раз на сотни и тысячи наблюдений. Однако в данном случае эта модель неприменима: средняя и дисперсия не равны друг другу и составляют, соответственно, 0,91 и 1,96 в первой выборке и 2,29 и 5,43 во второй выборке.

[19] Относительная частота, или частость, - это частота, отнесенная к общему коли­честву наблюдений; в данном случае это частота попадания желтого цвета на дан-позицию, отнесенная к количеству испытуемых. Например, частота попадания желтого цвета на 1-ю позицию f =24; количество испытуемых n =102; относительная а f *= f / n =0,235.

[20] Все формулы приведены для дискретных признаков, которые могут быть выра­жены целыми числами, например: порядковый номер, количество испытуемых, ко­личественный состав группы и т.п.

[21] Психологическое поглаживание - это "...любой акт, предполагающий признание присутствия другого человека" (Берн Э., 1992, с. 10). Практически в транзактно-аналитических сессиях под поглаживанием понимается выражение симпатии, вос­хищения, одобрения, любое искреннее признание положительных качеств и прояв­лений другого человека, к которым могут относиться внешние данные, глубинные личностные свойства, мастерство в своем деле, способность дарить психологическое тепло, и вовремя произнесенное слово и т.д.

[22] FPI-R - Фрайбургский личностный опросник

[23] В первоначальной выборке было 50 человек, но 8 из них были исключены из рассмотрения как имеющие средний балл по показателю анергии вытеснения (14-15). Показатели интенсивности чувства недостаточности у них тоже средние: 6 значений по 20 баллов и 2 значения по 25 баллов.

[24] Поправка на непрерывность вносится во всех случаях, когда признак принимает всего два значения и число степеней свободы поэтому равно 1 (см. параграф 4.2)

[25] В принципе признак может принимать и большее количество значений, так как любую шкалу, как мы убедились, можно свести к альтернативной шкале "Есть эффект" - "Нет эффекта".

[26] Стохастическая означает вероятностная. Связи между случайными явлениями называют вероятностными, или стохастическими связями (Суходольский Г. В., 1972, с. 52). Этот термин подчеркивает их отличие от детерминированных или функциональных связей в физике или математике (связь площади треугольника с его высотой и основанием, связь длины окружности с ее радиусом и т. п.). В функциональных связях каждому значению первого признака всегда соответствует (в идеальных условиях) совершенно определенное значение другого признака (Плохинский Н.А., 1970, с. 41). В корреляционных связях каждому значению одного признака может соответствовать определенное распределение значений другого, признака, но не определенное его значение.

 

[27] Обычно рекомендуется всегда меньшему значению приписывать меньший ранг (см. Пример 1). В данном случае самая значимая ценность получает меньший ранг. Для подсчета коэффициента это несущественно. Главное, чтобы ранжирование было в обоих рядах однонаправленным.

[28] В исследовании М.Э. Раховой были выявлены виды страха, отсутствующие в перечне Вольпе, например, страх за благополучие близких (1-й ранг), неизвестнос­ти (5-й ранг), нападения (8-й ранг) и др. Однако в данном примере в ранжирова­нии участвуют только 20 страхов из перечня Вольпе, поскольку мы можем под­считывать коэффициент корреляции лишь между теми признаками, которые изме­рены в обеих выборках.

[29] Введение этого условия диктовалось тем, что в непосредственно предшествовав­ших исследованию выборах 52% электората составляли лица старше 55 лет.







Дата добавления: 2015-09-18; просмотров: 649. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия