Пусть заданы векторы в прямоугольной системе координат
тогда
Скалярное произведение векторов.
Определение. Скалярным произведением векторов и называется число, равное произведению длин этих сторон на косинус угла между ними. × = ï ïï ïcosj
Свойства скалярного произведения:
1) × = ï ï2; 2) × = 0, если ^ или = 0 или = 0. 3) × = × ; 4) ×( + ) = × + × ; 5) (m )× = ×(m ) = m( × );
Если рассматривать векторы в декартовой прямоугольной системе координат, то × = xa xb + ya yb + za zb; Используя полученные равенства, получаем формулу для вычисления угла между векторами: ;
Пример. Найти (5 + 3 )(2 - ), если 10 × - 5 × + 6 × - 3 × = 10 , т.к. .
Пример. Найти угол между векторами и , если . Т.е. = (1, 2, 3), = (6, 4, -2) × = 6 + 8 – 6 = 8: . cosj =
Пример. Найти скалярное произведение (3 - 2 )×(5 - 6 ), если 15 × - 18 × - 10 × + 12 × = 15 + 12×36 = 240 – 336 + 432 = 672 – 336 = 336.
Пример. Найти угол между векторами и , если . Т.е. = (3, 4, 5), = (4, 5, -3) × = 12 + 20 - 15 =17: . cosj =
Пример. При каком m векторы и перпендикулярны.
= (m, 1, 0); = (3, -3, -4) .
Пример. Найти скалярное произведение векторов и , если ()() =
= 10 +
+ 27 + 51 + 135 + 72 + 252 = 547.
Векторное произведение векторов.
Определение. Векторным произведением векторов и называется вектор , удовлетворяющий следующим условиям: 1) , где j - угол между векторами и , 2) вектор ортогонален векторам и 3) , и образуют правую тройку векторов. Обозначается: или .
j
Свойства векторного произведения векторов:
1) ; 2) , если ïï или = 0 или = 0; 3) (m )´ = ´(m ) = m( ´ ); 4) ´( + ) = ´ + ´ ; 5) Если заданы векторы (xa, ya, za) и (xb, yb, zb) в декартовой прямоугольной системе координат с единичными векторами , то ´ =
6) Геометрическим смыслом векторного произведения векторов является площадь параллелограмма, построенного на векторах и .
Пример. Найти векторное произведение векторов и . = (2, 5, 1); = (1, 2, -3) .
При использовании компьютерной версии “ Курса высшей математики ” можно запустить программу, которая может найти скалярное и векторное произведения двух векторов. Для запуска программы дважды щелкните на значке: В открывшемся окне программы введите координаты векторов и нажмите Enter. После получения скалярного произведения нажмите Enter еще раз – будет получено векторное произведение. Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple (Ó Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4.
Пример. Вычислить площадь треугольника с вершинами А(2, 2, 2), В(4, 0, 3), С(0, 1, 0). (ед2).
Пример. Доказать, что векторы , и компланарны. , т.к. векторы линейно зависимы, то они компланарны.
Пример. Найти площадь параллелограмма, построенного на векторах , если (ед2).
Смешанное произведение векторов.
Определение. Смешанным произведением векторов , и называется число, равное скалярному произведению вектора на вектор, равный векторному произведению векторов и . Обозначается или (, , ). Смешанное произведение по модулю равно объему параллелепипеда, построенного на векторах , и .
Свойствасмешанного произведения:
1)Смешанное произведение равно нулю, если: а)хоть один из векторов равен нулю; б)два из векторов коллинеарны; в)векторы компланарны. 2) 3) 4) 5) Объем треугольной пирамиды, образованной векторами , и , равен 6)Если , , то
Пример. Доказать, что точки А(5; 7; 2), B(3; 1; -1), C(9; 4; -4), D(1; 5; 0) лежат в одной плоскости. Найдем координаты векторов: Найдем смешанное произведение полученных векторов: , Таким образом, полученные выше векторы компланарны, следовательно точки A, B, C и D лежат в одной плоскости.
Пример. Найти объем пирамиды и длину высоты, опущенной на грань BCD, если вершины имеют координаты A(0; 0; 1), B(2; 3; 5), C(6; 2; 3), D(3; 7; 2).
Найдем координаты векторов: Объем пирамиды Для нахождения длины высоты пирамиды найдем сначала площадь основания BCD. Sосн = (ед2) Т.к. V = ; (ед)
Уравнение поверхности в пространстве.
Определение. Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности.
Общее уравнение плоскости. Определение. Плоскостью называется поверхность, вес точки которой удовлетворяют общему уравнению: Ax + By + Cz + D = 0, где А, В, С – координаты вектора -вектор нормали к плоскости.
Возможны следующие частные случаи:
А = 0 – плоскость параллельна оси Ох В = 0 – плоскость параллельна оси Оу С = 0 – плоскость параллельна оси Оz D = 0 – плоскость проходит через начало координат А = В = 0 – плоскость параллельна плоскости хОу А = С = 0 – плоскость параллельна плоскости хОz В = С = 0 – плоскость параллельна плоскости yOz А = D = 0 – плоскость проходит через ось Ох В = D = 0 – плоскость проходит через ось Оу С = D = 0 – плоскость проходит через ось Oz А = В = D = 0 – плоскость совпадает с плоскостью хОу А = С = D = 0 – плоскость совпадает с плоскостью xOz В = С = D = 0 – плоскость совпадает с плоскостью yOz
Уравнение плоскости, проходящей через три точки.
|