Итак, доказано, что
, откуда вытекает, что , что и требовалось доказать. Из (1.6) вытекает, что , что и требовалось доказать. Упорядоченной -кой называется запись вида . Замечание 1.10. Содержательно, эта запись означает, что элемент записан на -м месте, элемент – на -м месте, …, элемент – на -м месте, т.е. элементы записаны в фиксированном порядке. Таким образом, понятие упорядоченная -ка – это аналог классического понятия вектор, заданный своими координатами в математике (в отличие от вектора компоненты упорядоченной -ки – элементы любого, не обязательно числового, множества) или понятия список, содержащий элементов в программировании. Декартовым произведением множеств (обозначается ) называется множество, состоящее из всех упорядоченных -ок , где , , … , т.е. . Если , то множество называется -й декартовой степенью множества и обозначается . По определению полагают , . Важный специальный случай декартового произведения имеет место при . Запись называется упорядоченной парой, а декартово произведение двух множеств и определяется равенством . (1.30) Декартово произведение двух множеств можно представить графически (см. рис. 1.3). Для этого от одной и той же точки откладывают горизонтальный и вертикальный отрезки и на них, как на сторонах, строится прямоугольник. Горизонтальный отрезок представляет множество , а вертикальный отрезок – множество . В соответствии с (1.30), декартово произведение представляется частью плоскости, ограниченной построенным прямоугольником (включая его границу), т.е. элементы множества представляются точками плоскости, а пара интерпретируется как координаты соответствующей точки. Замечание 1.11. С математической точки зрения в настоящем пункте построена алгебра. Одно из центральных понятий современной математики – алгебра – формально определяется как упорядоченная пара , где – множество элементов (носитель алгебры ), а – множество операций (сигнатура алгебры ). Элемент называется - арной (возможно, частичной) операцией , если каждой упорядоченной -ке , поставлен в соответствие однозначно определенный элемент – результат операции (это свойство – замкнутость операции на множестве ). 1-арную, 2-арную и 3-арную операции называют, соответственно, унарной, бинарной и тернарной операциями. Иногда в множестве выделяют некоторые элементы. Их называют -арными операциями. Таким образом, упорядоченная пара – алгебра множеств ( – универсальное множество). Упорядоченная пара – подалгебра алгебры , если , и каждая операция замкнута на множестве . Подалгебра алгебры множеств – булева алгебра множеств – представляет собой специальный случай следующего общего математического понятия. Алгебра – булева (, – бинарные, а ~ – унарная операции), если выполнены следующие условия (): , (коммутативность); , (ассоциативность); , (дистрибутивность); , (идемпотентность); (совместимость); существуют такие элементы , что для всех , , , . для каждого существует такой элемент ( – дополнение элемента ), что , . Все остальные свойства операций, и ~, аналогичные свойствам операций, и для множеств, могут быть выведены формальными методами (т.е. доказаны, как теоремы) из перечисленных выше свойств 1)-7).
|