Студопедия — ОСНОВНЫЕ СВОЙСТВА АСБЕСТОЦЕМЕНТНЫХ ИЗДЕЛИЙ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ОСНОВНЫЕ СВОЙСТВА АСБЕСТОЦЕМЕНТНЫХ ИЗДЕЛИЙ






 

Основные свойства асбестоцемента — прочность и деформатив-ность при воздействии статических и динамических (ударных) на­грузок. Для повышения сопротивляемости изделий воздействию ат­мосферных осадков, агрессивной внешней среды необходимо также обеспечить их достаточную плотность — водонепроницаемость, ми­нимально допустимое водопоглощение и др. Конкретные показате­ли качества асбестоцементных изделий определены в соответствую­щих стандартах. Так, например, согласно ГОСТ 16233—77 в отношении листов волнистых унифицированного профиля УВ среди других требований (формы, размеров, дефектов) предусматривает­ся, что их средняя плотность в высушенном состоянии должна быть не менее 1,75 г/см3, что обеспечивает величину водопоглощения не более 25%. Минимальный предел прочности при изгибе волнистых листов в поперечном к гребням волн направлении и в зависимости от толщины листа и сортности должен быть, как минимум, в преде­лах от 15,7 до 19,6 МПа, листы должны быть морозостойкими и вы­держивать в насыщенном водой состоянии не менее 25 циклов (у профиля УВ — не менее 50) попеременного замораживания и оттаи­вания без каких-либо признаков расслоения или повреждения, со­храняя после этого- испытания не менее 90% первоначальной вели­чины предела прочности, чтобы при стандартном испытании они были водонепроницаемыми (табл. 9.9).

 

Таблица 9.9 Физико-технические характеристики асбестоцементных листов (волнистых и плоских)

Показатели Профиль волнистых листов Вид плоских листов
обыкновенный усиленный унифицированный прессованный непрессованный
Предел прочности при изгибе, МПа, не менее 15,7 17,2 19,6    
Ударная вязкость, кДж/м2, не менее 1,5 1,6 1,6 2,6 2,5
Штамповал нагрузка, кН 1,72 2,15
Средняя плотность, г/см3, не менее 1,6 1,63 1,75 1,8 1,7
Морозостойкость, циклов, не менее          

 

Прочность труб оценивают в основном пределом прочности при разрыве, что определяется гидравлическим давлением. По величине максимального рабочего давления напорные водопроводные трубы разделяют на классы: до 0,6 МПа — класс ВТ6, до 0,9 МПа — класс ВТ9, до 1,2 МПа — класс ВТ12 и др. Газопроводные трубы по мак­симальному рабочему давлению разделяют на марки: для газопро­водов низкого давления (до 0,005 МПа) — марка ГАЗ-НД, для газо­проводов среднего давления (до 0,3 МПа) — марка ГАЗ-СД. Для соединения труб используют асбестоцементные муфты самоуплот­няющиеся типа САМ.

К стандартным характеристикам качества асбестоцемента отно­сится еще ударная вязкость, т. е. сопротивляемость изделий ударной нагрузке. Этот важный показатель качества изделий выражается ра­ботой, затрачиваемой на разрушение образцов стандартных разме­ров при ударном воздействии маятника. Так, листы УВ толщиной 6—7,5 мм должны иметь ударную вязкость от 1,5 до 1,8 Дж/м2 в за­висимости от сорта.

Из нестандартных характеристик качества асбестоцементных из­делий в ответственных конструкциях при нагрузках свыше 30—40% от разрушающих часто определяют прочность с учетом ползучести, величину модуля упругости, теплостойкость и некоторые другие по­казатели свойств.

Ползучесть асбестоцемента по сравнению с бетонами значитель­но больше, что объясняется большим количеством геля в вяжущей части. По этой же причине величина ползучести и интенсивность ее прироста со временем уменьшаются, так как возрастает объем крис­таллизационной структуры в цементном камне и уменьшается объ­ем гелевой составляющей. Испытания показывают, что величина прогиба асбестоцементных плиток, находящихся под нагрузкой, равной 50% разрушающей, в 3—3,5 раза больше величины прогиба, возникающего под влиянием кратковременного воздействия той же нагрузки. Малозаметное проявление ползучести наблюдается при нагрузках, равных 25—35% от разрушающих. Тем не менее проч­ность асбестоцементных изделий и конструкций всегда рассчитыва­ют с учетом ползучести.

Модуль упругости асбестоцемента зависит от величины нагруз­ки. Если последняя не превышает 75—85% разрушающей, то модуль упругости при растяжении (асбестоцемент в основном работает на растяжение) равен: 12000 МПа— у непрессованного асбестоцемента со средней плотностью до 1,7 кг/м3, изготовленного на 5-м и 6-м сортах асбеста; 18000 МПа --у прессованного асбестоцемента с объемной массой до 1,9 г/см3, изготовленного на 3-м и 4-м сортах асбеста. При напряжениях, больших чем 75—85% разрушающего, пропорциональность между направлением и деформацией наруша­ется, так как удлинение образцов растет быстрее соответствующих напряжений.

Модуль упругости увеличивается по мере повышения плотности и возраста асбестоцементных изделий, а также содержания асбеста.

Теплостойкость — способность асбестоцемента выдерживать без потери прочности высокие температуры. Исследования показы­вают, что с началом дегидратации гидросиликатов кальция при температуре 300°С начинается понижение прочности асбестоцемен­та. При температуре 400°С снижение прочности достигает уже за­метной величины — до 10—15%. При дальнейшем повышении тем­пературы создаются условия для дегидратации гидрата оксида кальция с новой потерей прочности асбестоцемента (до 45%), поэто­му предельной температурой допустимого нагрева обычного асбе­стоцемента может быть принята температура 500°С, что и является его теплостойкостью.

В целях экономии асбеста, являющегося сравнительно дефицит­ным природным материалом, предпринимались попытки заменить часть его другими компонентами, сходными в той или иной мере с тонковолокнистой структурой асбеста.

В этом направлении проводились опыты по замене части асбеста стекловолокном, но они показали, что необходимо использовать щелочестойкое стекловолокно, так как обычное оказалось недолго­вечным и в эксплуатационный период асбестоцемент с добавлением нещелочестойкого стекловолокна быстро разрушался. В настоящее время изучена возможность использования для этих целей мергеле-вого и базальтового стекловолокна.

На протяжении многих лет в ряде стран до 10—12% асбеста в производстве асбестоцементных изделий заменялись базальтовой минеральной ватой, которая обладает щелочестойкостью, сравни­тельно высокой коррозиестойкостью. Предпринимались положите­льные попытки заменять часть асбеста органическими заполните­лями, например целлюлозой, кострой (отход от переработки льна и конопли), что при условии их предварительной минерализации, например обработкой раствором хлористого кальция, дает эффект снижения расхода асбеста без заметного снижения качества асбе­стоцемента, особенно при сухой технологии изготовления изделий. Заменой асбестового волокна стремились также понизить опас­ность применения асбеста в связи с подозрениями на его концеро-генность. Как установлено в настоящее время, такая опасность была сильно преувеличена и практически она весьма мала с безу­словным сохранением асбеста как ценного сырья в производстве строительных материалов и изделий. Для повышения химической стойкости стекловолокна в зарубежных предложениях рекоменду­ется вводить оксиды циркония, а также новые составы стеклово­локна.








Дата добавления: 2015-09-18; просмотров: 373. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия